【題目】已知函數(shù)
與
軸的交點(diǎn)為
,且圖象上兩對(duì)稱(chēng)軸之間的最小距離為
,則使
成立的
的最小值為( )
A.
B.
C.
D.
【答案】A
【解析】由題意:函數(shù)f(x)與y軸的交點(diǎn)為(0,1),可得:1=2sinφ,sinφ= ,
∵0<φ< ,∴φ=
,
兩對(duì)稱(chēng)軸之間的最小距離為 可得周期T=π,解得:ω=2.
所以:f(x)=2sin(2x+ ),
由f(x+t)﹣f(﹣x+t)=0,
可得:函數(shù)圖象關(guān)于x=t對(duì)稱(chēng).求|t|的最小值即可是求對(duì)稱(chēng)軸的最小值,
∵f(x)=2sin(2x+ )的對(duì)稱(chēng)軸方程為:2x+
=
(k∈Z),
可得:x= 時(shí)最小,
故答案為:A .
由題意函數(shù)與y軸的交點(diǎn)為(0,1),可得sinφ的值,解出φ,根據(jù)兩對(duì)稱(chēng)軸的最小距離得出周期,解得ω,從而得到f(x)的解析式,由f(x+t)-f(-x+t)=0,可得函數(shù)關(guān)于x=t對(duì)稱(chēng),可得最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:
①函數(shù)y=f(x)在區(qū)間 內(nèi)單調(diào)遞增;
②函數(shù)y=f(x)在區(qū)間 內(nèi)單調(diào)遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;
④當(dāng)x=2時(shí),函數(shù)y=f(x)有極小值;
⑤當(dāng)x= 時(shí),函數(shù)y=f(x)有極大值.
則上述判斷中正確的是( )
A.①②
B.②③
C.③④⑤
D.③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)若曲線(xiàn) 在
處的切線(xiàn)經(jīng)過(guò)坐標(biāo)原點(diǎn),求
及該切線(xiàn)的方程;
(2)設(shè) ,若函數(shù)
的值域?yàn)?
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (
為常數(shù))與
軸有唯一的公關(guān)點(diǎn)
.
(Ⅰ)求函數(shù) 的單調(diào)區(qū)間;
(Ⅱ)曲線(xiàn) 在點(diǎn)
處的切線(xiàn)斜率為
,若存在不相等的正實(shí)數(shù)
,滿(mǎn)足
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠(chǎng)為檢驗(yàn)車(chē)間一生產(chǎn)線(xiàn)是否工作正常,現(xiàn)從生產(chǎn)線(xiàn)中隨機(jī)抽取一批零件樣本,測(cè)量尺寸(單位: )繪成頻率分布直方圖如圖所示:
(Ⅰ)求該批零件樣本尺寸的平均數(shù) 和樣本方差
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ)若該批零件尺寸 服從正態(tài)分布
,其中
近似為樣本平均數(shù)
,
近似為樣本方差
,利用該正態(tài)分布求
;
(Ⅲ)若從生產(chǎn)線(xiàn)中任取一零件,測(cè)量尺寸為 ,根據(jù)
原則判斷該生產(chǎn)線(xiàn)是否正常?
附: ;若
,則
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為 元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿(mǎn)三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類(lèi)型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車(chē)的投保類(lèi)型的頻率代替一輛車(chē)投保類(lèi)型的概率,完成下列問(wèn)題: 求一輛普通6座以下私家車(chē)(車(chē)險(xiǎn)已滿(mǎn)三年)在下一年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;
某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē).假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5000元,一輛非事故車(chē)盈利10000元.且各種投保類(lèi)型車(chē)的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問(wèn)題:
①若該銷(xiāo)售商購(gòu)進(jìn)三輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),某顧客欲在店內(nèi)隨機(jī)挑選兩輛車(chē),求這兩輛車(chē)恰好有一輛為事故車(chē)的概率;
②若該銷(xiāo)售商一次購(gòu)進(jìn)120輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求一輛車(chē)盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是偶函數(shù),而y=f(x+1)是奇函數(shù),且對(duì)任意0≤x≤1,都有f(x)≥0,f(x)是增函數(shù),則a=f(2010),b=f( ),c=﹣f(
)的大小關(guān)系是( )
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史戶(hù)獲益率(獲益率=獲益÷保費(fèi)收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計(jì)平均收益率;
(Ⅱ)根據(jù)經(jīng)驗(yàn)若每份保單的保費(fèi)在 元的基礎(chǔ)上每增加
元,對(duì)應(yīng)的銷(xiāo)量
(萬(wàn)份)與
(元)有較強(qiáng)線(xiàn)性相關(guān)關(guān)系,從歷史銷(xiāo)售記錄中抽樣得到如下
組
與
的對(duì)應(yīng)數(shù)據(jù):
| |||||
銷(xiāo)量 |
(ⅰ)根據(jù)數(shù)據(jù)計(jì)算出銷(xiāo)量 (萬(wàn)份)與
(元)的回歸方程為
;
(ⅱ)若把回歸方程 當(dāng)作
與
的線(xiàn)性關(guān)系,用(Ⅰ)中求出的平均獲益率估計(jì)此產(chǎn)品的獲益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大獲益,并求出該最大獲益.
參考公示:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) 的定義域?yàn)?
,若函數(shù)
滿(mǎn)足下列兩個(gè)條件,則稱(chēng)
在定義域
上是閉函數(shù).①
在
上是單調(diào)函數(shù);②存在區(qū)間
,使
在
上值域?yàn)?
.如果函數(shù)
為閉函數(shù),則
的取值范圍是.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com