【題目】已知拋物線C:y2=2px(p>0)與圓無公共點(diǎn),過拋物線C上一點(diǎn)M作圓D的兩條切線,切點(diǎn)分別為E,F,當(dāng)點(diǎn)M在拋物線C上運(yùn)動(dòng)時(shí),直線EF都不通過的點(diǎn)構(gòu)成一個(gè)區(qū)域,求這個(gè)區(qū)域的面積的取值范圍.
【答案】(0,π)
【解析】
聯(lián)立圓的方程和拋物線方程,可得的方程,由方程有非負(fù)數(shù)解,可得
,由
,
既在圓
上,又在以
為直徑的圓上,可得切點(diǎn)弦
的方程,考慮關(guān)于
的方程有解,可得當(dāng)
運(yùn)動(dòng)時(shí),直線
都不通過的點(diǎn)構(gòu)成一個(gè)區(qū)域是圓
,由圓的面積公式可得范圍.
解:拋物線與圓
無公共點(diǎn),
可得即
無非負(fù)數(shù)解,
即有△,解得
或
,
可得,
設(shè)
,
總在圓
外部,即
對一切實(shí)數(shù)
都成立,
由,即
,即
成立,
點(diǎn),
在圓
上,也在以
,
,
,
為直徑的圓上.
即在上,
上面兩個(gè)圓的方程相減可得:,
即為直線的方程,化為
,
,
關(guān)于的二次方程有實(shí)數(shù)根,
,
即,
即直線不經(jīng)過圓
的內(nèi)部的每一個(gè)點(diǎn).
當(dāng)運(yùn)動(dòng)時(shí),直線
都不通過的點(diǎn)構(gòu)成一個(gè)區(qū)域是圓
,
這個(gè)區(qū)域的面積是,
取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AC過定點(diǎn)F(2,0),且與直線x=-2相切,圓心C的軌跡為E,
(1)求圓心C的軌跡E的方程;
(2)若直線l交E與P,Q兩點(diǎn),且線段PQ的中心點(diǎn)坐標(biāo)(1,1),求|PQ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為2,
,
分別為
的中點(diǎn),
與
交于點(diǎn)
,將
沿
折起到
的位置,使平面
平面
.
(Ⅰ)求證:平面平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判斷線段上是否存在點(diǎn)
,使
平面
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線y2=2px(p>0)的焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),且3
,拋物線的準(zhǔn)線l與x軸交與點(diǎn)C,AA1垂直l于點(diǎn)A1,若四邊形AA1CF的面積為
,則準(zhǔn)線l的方程為( )
A.B.
C.x=﹣2D.x=﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,其中
.
討論函數(shù)
與
的圖象的交點(diǎn)個(gè)數(shù);
若函數(shù)
與
的圖象無交點(diǎn),設(shè)直線
與的數(shù)
和
的圖象分別交于點(diǎn)P,
證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,且與坐標(biāo)軸形成的三角形面積為
.求:
(1)求證:不論為何實(shí)數(shù),直線
過定點(diǎn)P;
(2)分別求和
時(shí),所對應(yīng)的直線條數(shù);
(3)針對的不同取值,討論集合
直線
經(jīng)過P,且與坐標(biāo)軸圍成的三角形面積為
中的元素個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為
,離心率為
。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左,右焦點(diǎn)分別為
,
左,右頂點(diǎn)分別為
,
,點(diǎn)
,
,為橢圓
上位于
軸上方的兩點(diǎn),且
,記直線
,
的斜率分別為
,
,若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司推出一新款手機(jī),因其功能強(qiáng)大,外觀新潮,一上市便受到消費(fèi)者爭相搶購,銷量呈上升趨勢.散點(diǎn)圖是該款手機(jī)上市后前6周的銷售數(shù)據(jù).
(1)根據(jù)散點(diǎn)圖,用最小二乘法求關(guān)于
的線性回歸方程,并預(yù)測該款手機(jī)第8周的銷量;
(2)為了分析市場趨勢,該公司市場部從前6周的銷售數(shù)據(jù)中隨機(jī)抽取2周的數(shù)據(jù),記抽取的銷量在18萬臺(tái)以上的周數(shù)為,求
的分布列和數(shù)學(xué)期望.參考公式:回歸直線方程
,其中:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(
)與雙曲線
(
,
)有相同的焦點(diǎn)
,點(diǎn)
是兩條曲線的一個(gè)交點(diǎn),且
軸,則該雙曲線經(jīng)過一、三象限的漸近線的傾斜角所在的區(qū)間是( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com