日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)的圖象在與軸交點(diǎn)處的切線方程是.
          (I)求函數(shù)的解析式;
          (II)設(shè)函數(shù),若的極值存在,求實(shí)數(shù)的取值范圍以及函數(shù)取得極值時(shí)對(duì)應(yīng)的自變量的值.
          (I);(II)時(shí),函數(shù)有極值;
          當(dāng)時(shí),有極大值;當(dāng)時(shí),有極小值.

          試題分析:(I)涉及切線,便要求出切點(diǎn).本題中切點(diǎn)如何求?函數(shù)的圖象在與軸交點(diǎn)處的切線方程是.說明切點(diǎn)就是直線軸交點(diǎn),所以令便得切點(diǎn)為(2,0).切點(diǎn)既在切線上又曲線,所以有, 即.
          函數(shù)在切點(diǎn)處的導(dǎo)數(shù)就是切線的斜率,所以由已知有.這樣便得一個(gè)方程組,解這個(gè)方程組求出 便的解析式.
          (II)將求導(dǎo)得,,
          .這是一個(gè)二次方程,要使得函數(shù)有極值,則方程要有兩個(gè)不同的實(shí)數(shù)根,所以,由此可得的范圍.解方程有便得取得極值時(shí)的值.
          試題解析:( I)由已知,切點(diǎn)為(2,0), 故有, 即
          ,由已知
          聯(lián)立①②,解得.所以函數(shù)的解析式為  
          (II)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240309414631074.png" style="vertical-align:middle;" />

          當(dāng)函數(shù)有極值時(shí),則,方程有實(shí)數(shù)解,                                           由,得.
          ①當(dāng)時(shí),有實(shí)數(shù),在左右兩側(cè)均有,故函數(shù)無極值
          ②當(dāng)m<1時(shí),g'(x)=0有兩個(gè)實(shí)數(shù)根x1= (2-), x2= (2+), g(x),g'(x) 的情況如下表:







          +
          0
          -
          0
          +


          極大值

          極小值

          所以在時(shí),函數(shù)有極值;
          當(dāng)時(shí),有極大值;當(dāng)時(shí),有極小值.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)函數(shù),曲線通過點(diǎn)(0,2a+3),且在處的切線垂直于y軸.
          (I)用a分別表示b和c;
          (II)當(dāng)bc取得最大值時(shí),寫出的解析式;
          (III)在(II)的條件下,g(x)滿足,求g(x)的最大值及相應(yīng)x值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)的圖像在點(diǎn)處的切線方程為.
          (I)求實(shí)數(shù),的值;
          (Ⅱ)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)
          (1)當(dāng)時(shí),求的單調(diào)區(qū)間;
          (2)若,設(shè)是函數(shù)的兩個(gè)極值點(diǎn),且,記分別為的極大值和極小值,令,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,某自來水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線排水管,在路南側(cè)沿直線排水管(假設(shè)水管與公路的南,北側(cè)在一條直線上且水管的大小看作為一條直線),現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線EF將接通.已知AB = 60m,BC = 60m,公路兩側(cè)排管費(fèi)用為每米1萬元,穿過公路的EF部分的排管費(fèi)用為每米2萬元,設(shè)EF與AB所成角為.矩形區(qū)域內(nèi)的排管費(fèi)用為W.

          (1)求W關(guān)于的函數(shù)關(guān)系式;
          (2)求W的最小值及相應(yīng)的角

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)
          (Ⅰ)當(dāng)時(shí),求函數(shù)的極大值和極小值;
          (Ⅱ)當(dāng)時(shí),恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù),點(diǎn)為一定點(diǎn),直線分別與函數(shù)的圖象和軸交于點(diǎn),,記的面積為.
          (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
          (2)當(dāng)時(shí), 若,使得, 求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          函數(shù)f(x)=ln(x+1)-的零點(diǎn)所在的大致區(qū)間是(  )
          A.(0,1)B.(1,2)
          C.(2,e)D.(3,4)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          設(shè)動(dòng)直線與函數(shù)的圖象分別交于點(diǎn)A、B,則|AB|的最小值為                     (    )
          A.   B.  C.    D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案