日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識(shí)測(cè)試.
          (Ⅰ)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為環(huán)保知識(shí)成績(jī)優(yōu)秀與學(xué)生的文理分類(lèi)有關(guān).

          優(yōu)秀人數(shù)

          非優(yōu)秀人數(shù)

          總計(jì)

          甲班

          乙班

          30

          總計(jì)

          60

          (Ⅱ)現(xiàn)已知A,B,C三人獲得優(yōu)秀的概率分別為 ,設(shè)隨機(jī)變量X表示A,B,C三人中獲得優(yōu)秀的人數(shù),求X的分布列及期望E(X).
          附: ,n=a+b+c+d

          P(K2>k0

          0.100

          0.050

          0.025

          0.010

          0.005

          k0

          2.706

          3.841

          5.024

          6.635

          7.879

          【答案】解:(Ⅰ)2×2列聯(lián)表如下

          優(yōu)秀

          非優(yōu)秀

          總計(jì)

          甲班

          40

          20

          60

          乙班

          20

          30

          50

          總計(jì)

          60

          50

          110

          算得,
          所以有99%的把握認(rèn)為學(xué)生的環(huán)保知識(shí)成績(jī)與文理分科有關(guān)
          (Ⅱ)設(shè)A,B,C成績(jī)優(yōu)秀分別記為事件M,N,R,則
          ∴隨機(jī)變量X的取值為0,1,2,3
          ,
          所以隨機(jī)變量X的分布列為:

          X

          0

          1

          2

          3

          P

          E(X)=0× +1× +2× +3× =
          【解析】(Ⅰ)由題設(shè)條件作出列聯(lián)表,根據(jù)列聯(lián)表中的數(shù)據(jù),得到 .由此得到有99%的把握認(rèn)為環(huán)保知識(shí)測(cè)試與專(zhuān)業(yè)有關(guān).(2)由題設(shè)知X的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中曲線(xiàn) 經(jīng)伸縮變換 后得到曲線(xiàn)C2 , 在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C3的極坐標(biāo)方程為
          (1)求曲線(xiàn)C2的參數(shù)方程和C3的直角坐標(biāo)方程;
          (2)設(shè)M為曲線(xiàn)C2上的一點(diǎn),又M向曲線(xiàn)C3引切線(xiàn),切點(diǎn)為N,求|MN|的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一緝私艇巡航至距領(lǐng)海邊界線(xiàn)l(一條南北方向的直線(xiàn))3.8海里的A處,發(fā)現(xiàn)在其北偏東30°方向相距4海里的B處有一走私船正欲逃跑,緝私艇立即追擊,已知緝私艇的最大航速是走私船最大航速的3倍,假設(shè)緝私艇和走私船均按直線(xiàn)方向以最大航速航行.
          (1)若走私船沿正東方向逃離,試確定緝私艇的追擊方向,使得用最短時(shí)間在領(lǐng)海內(nèi)攔截成功;(參考數(shù)據(jù):sin17°≈ ≈5.7446)
          (2)問(wèn):無(wú)論走私船沿何方向逃跑,緝私艇是否總能在領(lǐng)海內(nèi)成功攔截?并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=xex﹣a(lnx+x).
          (1)若函數(shù)f(x)恒有兩個(gè)零點(diǎn),求a的取值范圍;
          (2)若對(duì)任意x>0,恒有不等式f(x)≥1成立. ①求實(shí)數(shù)a的值;
          ②證明:x2ex>(x+2)lnx+2sinx.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù) (m,n∈R)在x=1處取得極值2.

          (1)求f(x)的解析式;

          (2)k為何值時(shí),方程f(x)-k=0只有1個(gè)根

          (3)設(shè)函數(shù)g(x)=x2-2ax+a,若對(duì)于任意x1∈R,總存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】現(xiàn)在,很多人都喜歡騎“共享單車(chē)”,但也有很多市民并不認(rèn)可.為了調(diào)查人們對(duì)這種交通方式的認(rèn)可度,某同學(xué)從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20名市民,得到了一個(gè)市民是否認(rèn)可的樣本,具體數(shù)據(jù)如下列聯(lián)表

          附:

          根據(jù)表中的數(shù)據(jù),下列說(shuō)法中,正確的是(

          A. 沒(méi)有95% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”

          B. 有99% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”

          C. 可以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”

          D. 可以在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)=|2x﹣1|﹣|x+2|.
          (Ⅰ)解不等式f(x)>0;
          (Ⅱ)若x0∈R,使得f(x0)+2m2<4m,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xoy中,曲線(xiàn)C的參數(shù)方程為 (θ為參數(shù)),直線(xiàn)l的參數(shù)方程為 (t為參數(shù))以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系.
          (1)寫(xiě)出直線(xiàn)l的普通方程以及曲線(xiàn)C的極坐標(biāo)方程;
          (2)若直線(xiàn)l與曲線(xiàn)C的兩個(gè)交點(diǎn)分別為M,N,直線(xiàn)l與x軸的交點(diǎn)為P,求|PM||PN|的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2016年美國(guó)總統(tǒng)大選過(guò)后,有媒體從某公司的全體員工中隨機(jī)抽取了200人,對(duì)他們的投票結(jié)果進(jìn)行了統(tǒng)計(jì)(不考慮棄權(quán)等其他情況),發(fā)現(xiàn)支持希拉里的一共有95人,其中女員工55人,支持特朗普的男員工有60人.
          (Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表:據(jù)此材料,是否有95%的把握認(rèn)為投票結(jié)果與性別有關(guān)?

          支持希拉里

          支持特朗普

          合計(jì)

          男員工

          女員工

          合計(jì)

          (Ⅱ)若從該公司的所有男員工中隨機(jī)抽取3人,記其中支持特朗普的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.(用相應(yīng)的頻率估計(jì)概率)
          附:

          P(K2≥k0

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          K0

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          (參考公式:K2= ,其中n=a+b+c+d)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案