日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列是遞減的等差數(shù)列,的前項(xiàng)和是,且,有以下四個(gè)結(jié)論

          ;

          若對(duì)任意都有成立,則的值等于78時(shí);

          存在正整數(shù),使;

          存在正整數(shù),使

          其中所有正確結(jié)論的序號(hào)是

          A. ①②B. ①②③

          C. ②③④D. ①②③④

          【答案】D

          【解析】

          S6=S9,得到a7+a8+a9=0,利用等差數(shù)列的性質(zhì)化簡(jiǎn),得到a8=0,進(jìn)而得到選項(xiàng)①正確;再由數(shù)列{an}是遞減的等差數(shù)列以及a8=0,可得出當(dāng)n等于78時(shí),sn取最大值,選項(xiàng)②正確;利用等差數(shù)列的前n項(xiàng)和公式表示出S15,利用等差數(shù)列的性質(zhì)化簡(jiǎn)后,將a8的值代入可得出S15=0,故存在正整數(shù)k,使Sk=0,選項(xiàng)③正確;當(dāng)m=5時(shí),表示出S10-S5,利用等差數(shù)列的性質(zhì)化簡(jiǎn)后,將a8=0代入可得出S10-S5=0,即S10=S5 ,故存在正整數(shù)m,使Sm=S2m,選項(xiàng)④正確.

          ,,

          由等差數(shù)列的性質(zhì),可得,故結(jié)論正確;

          數(shù)列是遞減的等差數(shù)列,,

          當(dāng)的值等于7或8時(shí),取得最大值,故結(jié)論正確;

          ,則,存在正整數(shù)時(shí),使,故結(jié)論正確;

          由等差數(shù)列的性質(zhì),可得,

          存在正整數(shù),使,故結(jié)論正確.

          故所有正確結(jié)論的序號(hào)是①②③④.故選D.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,四棱錐中,底面,,,,,的中點(diǎn).

          (1)求證:平面

          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某健身機(jī)構(gòu)統(tǒng)計(jì)了去年該機(jī)構(gòu)所有消費(fèi)者的消費(fèi)金額(單位:元),如下圖所示:

          1)將去年的消費(fèi)金額超過 3200 元的消費(fèi)者稱為“健身達(dá)人”,現(xiàn)從所有“健身達(dá)人”中隨機(jī)抽取 2 人,求至少有 1 位消費(fèi)者,其去年的消費(fèi)金額超過 4000 元的概率;

          2)針對(duì)這些消費(fèi)者,該健身機(jī)構(gòu)今年欲實(shí)施入會(huì)制,詳情如下表:

          會(huì)員等級(jí)

          消費(fèi)金額

          普通會(huì)員

          2000

          銀卡會(huì)員

          2700

          金卡會(huì)員

          3200

          預(yù)計(jì)去年消費(fèi)金額在內(nèi)的消費(fèi)者今年都將會(huì)申請(qǐng)辦理普通會(huì)員,消費(fèi)金額在內(nèi)的消費(fèi)者都將會(huì)申請(qǐng)辦理銀卡會(huì)員,消費(fèi)金額在內(nèi)的消費(fèi)者都將會(huì)申請(qǐng)辦理金卡會(huì)員. 消費(fèi)者在申請(qǐng)辦理會(huì)員時(shí),需-次性繳清相應(yīng)等級(jí)的消費(fèi)金額.該健身機(jī)構(gòu)在今年底將針對(duì)這些消費(fèi)者舉辦消費(fèi)返利活動(dòng),現(xiàn)有如下兩種預(yù)設(shè)方案:

          方案 1:按分層抽樣從普通會(huì)員, 銀卡會(huì)員, 金卡會(huì)員中總共抽取 25 位“幸運(yùn)之星”給予獎(jiǎng)勵(lì): 普通會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì) 500 元; 銀卡會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì) 600 元; 金卡會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì) 800 .

          方案 2:每位會(huì)員均可參加摸獎(jiǎng)游戲,游戲規(guī)則如下:從-個(gè)裝有 3 個(gè)白球、 2 個(gè)紅球(球只有顏色不同)的箱子中, 有放回地摸三次球,每次只能摸-個(gè)球.若摸到紅球的總數(shù)消費(fèi)金額/元為 2,則可獲得 200 元獎(jiǎng)勵(lì)金; 若摸到紅球的總數(shù)為 3,則可獲得 300 元獎(jiǎng)勵(lì)金;其他情況不給予獎(jiǎng)勵(lì). 規(guī)定每位普通會(huì)員均可參加 1 次摸獎(jiǎng)游戲;每位銀卡會(huì)員均可參加 2 次摸獎(jiǎng)游戲;每位金卡會(huì)員均可參加 3 次摸獎(jiǎng)游戲(每次摸獎(jiǎng)的結(jié)果相互獨(dú)立) .

          以方案 2 的獎(jiǎng)勵(lì)金的數(shù)學(xué)期望為依據(jù),請(qǐng)你預(yù)測(cè)哪-種方案投資較少?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,,,,△是等邊三角形,分別為的中點(diǎn).

          (Ⅰ)求證:平面

          (Ⅱ)若二面角的大小為,求直線與平面所成角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】平行四邊形中,,,點(diǎn)在邊上,則的最大值為( )

          A. B. C. 0 D. 2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點(diǎn)軸上,中心在坐標(biāo)原點(diǎn),長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)是否存在過的直線,使得直線與橢圓交于,?若存在,請(qǐng)求出直線的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】1)已知是虛數(shù)單位)是關(guān)于的方程的根,、,求的值;

          2)已知是虛數(shù)單位)是關(guān)于的方程的一個(gè)根,,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中,底面,底面為正方形,,點(diǎn)為正方形內(nèi)部的一點(diǎn),且,則直線所成角的余弦值的取值范圍為( )

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列有關(guān)命題的說法正確的是(  )

          A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”

          B.x=-1”是“x2-5x-6=0”的必要不充分條件

          C.命題“若xy,則sin x=sin y”的逆否命題為真命題

          D.命題“x0∈R使得”的否定是“x∈R,均有x2x+1<0”

          查看答案和解析>>

          同步練習(xí)冊(cè)答案