【題目】已知函數(shù),
.
()求函數(shù)
的單調(diào)區(qū)間及最值.
()若對(duì)
,
恒成立,求
的取值范圍.
()求證:
,
.
【答案】(1) 單調(diào)增區(qū)間是,單調(diào)減區(qū)間是
,
,無(wú)最小值.(2)
(3)見(jiàn)解析
【解析】分析:(1)先求函數(shù)定義域,利用導(dǎo)數(shù)求函數(shù)f(x)的單調(diào)區(qū)間及最值。(2)由,
恒成立,等價(jià)變形為對(duì)
,
恒成立,令
,利用導(dǎo)數(shù)求h(x)的最大值,即可求。(3)由(
)知,當(dāng)
,
時(shí),
,即
,令
,得
,即
,依次令
,
,
,
,
,不等式同向相加可證。
詳解:()
的定義域?yàn)?/span>
,
,
令得
,令
,得
,
∴的單調(diào)增區(qū)間是
,單調(diào)減區(qū)間是
,
,無(wú)最小值.
()若對(duì)
,
恒成立,
則對(duì),
恒成立,
即對(duì),
恒成立,
令,則
,
當(dāng)時(shí),顯然
,
∴在
上是減函數(shù),
∴當(dāng)時(shí),
,
∴,即
的取值范圍是
.
()證明:由(
)知,當(dāng)
,
時(shí),
,即
,
在上式中,令,得
,即
,
依次令,
,
,
,
,
得,
,
,
,
將這個(gè)式子左右兩邊分別相加得
,
即,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓經(jīng)過(guò)點(diǎn)
,左、右焦點(diǎn)分別是
,
,
點(diǎn)在橢圓上,且滿足
的
點(diǎn)只有兩個(gè).
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)且不垂直于坐標(biāo)軸的直線
交橢圓
于
,
兩點(diǎn),在
軸上是否存在一點(diǎn)
,使得
的角平分線是
軸?若存在求出
,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)求在區(qū)間
上的極小值和極大值;
(2)求在
(
為自然對(duì)數(shù)的底數(shù))上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市A,B兩所中學(xué)的學(xué)生組隊(duì)參加辯論賽,A中學(xué)推薦3名男生,2名女生,B中學(xué)推薦了3名男生,4名女生,兩校推薦的學(xué)生一起參加集訓(xùn),由于集訓(xùn)后隊(duì)員的水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人,女生中隨機(jī)抽取3人組成代表隊(duì)
(1)求A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率.
(2)某場(chǎng)比賽前,從代表隊(duì)的6名隊(duì)員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X得分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷(xiāo)售額和利潤(rùn)額資料如下表
商店名稱 | A | B | C | D | E |
銷(xiāo)售額x(千萬(wàn)元) | 3 | 5 | 6 | 7 | 9 |
利潤(rùn)額y(百萬(wàn)元) | 2 | 3 | 3 | 4 | 5 |
(1)畫(huà)出散點(diǎn)圖.觀察散點(diǎn)圖,說(shuō)明兩個(gè)變量有怎樣的相關(guān)性.
(2)用最小二乘法計(jì)算利潤(rùn)額y對(duì)銷(xiāo)售額x的回歸直線方程.
(3)當(dāng)銷(xiāo)售額為4(千萬(wàn)元)時(shí),估計(jì)利潤(rùn)額的大小.
其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的一段圖像如圖所示.
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從集市上買(mǎi)回來(lái)的蔬菜仍存有殘留農(nóng)藥,食用時(shí)需要清洗數(shù)次,統(tǒng)計(jì)表中的表示清洗的次數(shù),
表示清洗
次后
千克該蔬菜殘留的農(nóng)藥量(單位:微克).
(1)在如圖的坐標(biāo)系中,描出散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為清洗
次后
千克該蔬菜殘留的農(nóng)藥量的回歸方程類(lèi)型;(給出判斷即可,不必說(shuō)明理由)
(2)根據(jù)判斷及下面表格中的數(shù)據(jù),建立關(guān)于
的回歸方程;
表中,
.
(3)對(duì)所求的回歸方程進(jìn)行殘差分析.
附:①線性回歸方程中系數(shù)計(jì)算公式分別為
,
;
②,
說(shuō)明模擬效果非常好;
③,
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=asinωx+bcosωx(ω>0)的定義域?yàn)?/span>R,最小正周期為π,且對(duì)任意實(shí)數(shù)x,恒有成立.
(1)求實(shí)數(shù)a和b的值;
(2)作出函數(shù)f(x)在區(qū)間(0,π)上的大致圖象;
(3)若兩相異實(shí)數(shù)x1、x2∈(0,π),且滿足f(x1)=f(x2),求f(x1+x2)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在某海濱城市A附近的海面出現(xiàn)臺(tái)風(fēng)活動(dòng).據(jù)監(jiān)測(cè),目前臺(tái)風(fēng)中心位于城市A的東偏南60°方向、距城市A300km的海面點(diǎn)P處,并以20km/h的速度向西偏北30°方向移動(dòng).如果臺(tái)風(fēng)影響的范圍是以臺(tái)風(fēng)中心為圓心的圓形區(qū)域,半徑為km,將問(wèn)題涉及范圍內(nèi)的地球表面看成平面,判斷城市A是否會(huì)受到上述臺(tái)風(fēng)的影響.如果會(huì),求出受影響的時(shí)間;如果不會(huì),說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com