日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)
          如圖,為正三角形,平面的中點(diǎn),

          (1)求證:DM//面ABC;   
          (2)平面平面。
          (3)求直線AD與面AEC所成角的正弦值;
          1)取AC中點(diǎn)為F,連接MF,求證可得  ,所以 MFBD是平行四邊形
          MD//BF                                          (4分)
          (2) MD//BF     
          平面平面。                                         (8分)
          (3) 有上題可知 DM面ECA 所以即為所求的線面角
          SIN=                                                (12分)
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分12分)
          如圖,在三棱錐中,底面ABC,
          AP="AC," 點(diǎn),分別在棱上,且BC//平面ADE
          (Ⅰ)求證:DE⊥平面
          (Ⅱ)當(dāng)二面角為直二面角時(shí),求多面體ABCED與PAED的體積比。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本題滿分12分)
          如圖,在三棱錐P-ABC中,⊿PAB是等邊三角形,D,E分別為AB,PC的中點(diǎn).
          (1)在BC邊上是否存在一點(diǎn)F,使得PB∥平面DEF
          (2)若∠PAC=∠PBC=90º,證明:AB⊥PC
          (3)在(2)的條件下,若AB=2,AC=求三棱錐P-ABC的體積

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分12分)
          已知梯形中,,
          ,、分別是上的點(diǎn),,的中點(diǎn)。沿將梯形翻折,使平面⊥平面 (如圖) .

          (Ⅰ)當(dāng)時(shí),求證: ;
          (Ⅱ)以為頂點(diǎn)的三棱錐的體積記為,求的最大值;
          (Ⅲ)當(dāng)取得最大值時(shí),求鈍二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分12分)
          如圖,四棱錐S—ABCD的底面是邊長(zhǎng)為1的正方形,SD垂直于底面ABCD,SB=

          (Ⅰ)求面ASD與面BSC所成二面角的大;
          (Ⅱ)設(shè)棱SA的中點(diǎn)為M,求異面直線DM與SB所成角的大。
          (Ⅲ)求點(diǎn)D到平面SBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (、(本題12分)

          如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD,底面ABCD為直角梯形,BCADABADAD=2AB=2BC="2, " OAD中點(diǎn).
          (1)求證:PO⊥平面ABCD;
          (2)求直線PB與平面PAD所成角的正弦值;
          (3)線段AD上是否存在點(diǎn)Q,使得三棱錐的體積為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          (本題滿分14分)
          已知四邊形ABCD是正方形,P是平面ABCD外一點(diǎn),且PA=PB=PC=PD=AB=2,是棱的中點(diǎn).建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用空間向量方法解答以下問(wèn)題:
          (1)求證:
          (2) 求證:;
          (3)求直線與直線所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本題滿分14分)
          如圖, ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P為AB的中點(diǎn).

          (1)求證:平面PCF⊥平面PDE;
          (2)求證:AE∥平面BCF.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          在正四棱錐S-ABCD中,E是BC的中點(diǎn),P點(diǎn)在側(cè)面內(nèi)及其邊界上運(yùn)動(dòng),并且總是保持PEAC.則動(dòng)點(diǎn)P的軌跡與△SCD組成的相關(guān)圖形最有可能的是(   ).
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案