日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè),為正整數(shù),一個正整數(shù)數(shù)列滿足.,定義集合.數(shù)列中的是集合中元素的個數(shù).

          1)若數(shù)列5,3,3,21,1,寫出數(shù)列;

          2)若,為公比為的等比數(shù)列,求;

          3)對,定義集合,令是集合中元素數(shù)的個數(shù).求證:對,均有.

          【答案】1)數(shù)列;(2;(3)證明見解析

          【解析】

          1)根據(jù)題意得出求出,即可得出數(shù)列;

          2)根據(jù)題意得出,從而寫出數(shù)列,假設(shè)數(shù)列中有,,,,,結(jié)合題設(shè)條件證明,利用等比數(shù)列的求和公式即可得出;

          3)利用(2)中結(jié)論得出,接下來證明對,即可得出.

          1

          數(shù)列

          2)由題意知,則

          因為數(shù)列為公比為的等比數(shù)列,所以數(shù)列

          假設(shè)數(shù)列中有,,,

          所以

          由題意可知

          所以

          所以

          3)對,表示數(shù)列中大于等于的個數(shù),即

          由(2)知

          并且

          所以

          設(shè),則,即,從而

          從而,故,而,故有

          設(shè),即,根據(jù)集合的定義,有

          知,,由的定義可得

          而由,故

          由此,對,均有.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正項等比數(shù)列,等差數(shù)列滿足,且的等比中項.

          (1)求數(shù)列的通項公式;

          (2)設(shè),求數(shù)列的前項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若處取得最大值,求實數(shù)的值;

          (2)若,求在區(qū)間上的最大值;

          (3)若,直線都不是曲線的切線,求的取值范圍(只需直接寫出結(jié)果).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱柱中, 平面,,為鄰邊作平行四邊形,連接.

          (1)求證:平面

          (2)若二面角.

          求證:平面平面;

          求直線與平面所成角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱中,側(cè)面底面,四邊形是邊長為2的菱形,,,E,F分別為AC,的中點.

          (1)求證:直線EF∥平面

          (2)設(shè)分別在側(cè)棱,上,且,求平面BPQ分棱柱所成兩部分的體積比.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,圓經(jīng)過伸縮變換后得到曲線以坐標(biāo)原點為極點,軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

          (1)求曲線的直角坐標(biāo)方程及直線的直角坐標(biāo)方程;

          (2)設(shè)點上一動點,求點到直線的距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義函數(shù)如下:對于實數(shù),如果存在整數(shù),使得,.則下列結(jié)論:是實數(shù)上的遞增函數(shù);是周期為1的函數(shù);是奇函數(shù);④函數(shù)的圖像與直線有且僅有一個交點.則正確結(jié)論的序號是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知四棱臺的上下底面分別是邊長為2和4的正方形, = 4且 ⊥底面,點的中點.

          (Ⅰ)求證: ;

          (Ⅱ)在邊上找一點,使∥面

          并求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓()的上頂點為,左焦點為,離心率為,直線與圓相切.

          1)求橢圓的標(biāo)準方程;

          2)設(shè)過點且斜率存在的直線與橢圓相交于兩點,線段的垂直平分線交軸于點,試判斷是否為定值?并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案