日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知f(x)= (ax﹣ax)(a>0且a≠1).
          (1)判斷f(x)的奇偶性.
          (2)討論f(x)的單調(diào)性.
          (3)當(dāng)x∈[﹣1,1]時(shí),f(x)≥b恒成立,求b的取值范圍.

          【答案】
          (1)解:∵f(x)= ,

          所以f(x)定義域?yàn)镽,

          又f(﹣x)= (ax﹣ax)=﹣ (ax﹣ax)=﹣f(x),

          所以函數(shù)f(x)為奇函數(shù)


          (2)解:任取x1<x2

          則f(x2)﹣f(x1)= (ax2﹣ax1)(1+a﹣(x1+x2

          ∵x1<x2,且a>0且a≠1,1+a﹣(x1+x2>0

          ①當(dāng)a>1時(shí),a2﹣1>0,ax2﹣ax1>0,則有f(x2)﹣f(x1)>0,

          ②當(dāng)0<a<1時(shí),a2﹣1<0.,ax2﹣ax1<0,則有f(x2)﹣f(x1)>0,

          所以f(x)為增函數(shù)


          (3)解:當(dāng)x∈[﹣1,1]時(shí),f(x)≥b恒成立,

          即b小于等于f(x)的最小值,

          由(2)知當(dāng)x=﹣1時(shí),f(x)取得最小值,最小值為 )=﹣1,

          ∴b≤﹣1.

          求b的取值范圍(﹣∞,﹣1]


          【解析】(1)由函數(shù)的解析式可求函數(shù)的定義域,先證奇偶性:代入可得f(﹣x)=﹣f(x),從而可得函數(shù)為奇函數(shù);(2)再證單調(diào)性:利用定義任取x1<x2 , 利用作差比較f(x1)﹣f(x2)的正負(fù),從而確當(dāng)f(x1)與f(x2)的大小,進(jìn)而判斷函數(shù)的單調(diào)性;(3)對(duì)一切x∈[﹣1,1]恒成立,轉(zhuǎn)化為b小于等于f(x)的最小值,利用(2)的結(jié)論求其最小值,從而建立不等關(guān)系解之即可.
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的奇偶性的相關(guān)知識(shí)可以得到問題的答案,需要掌握偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},給出如下四個(gè)圖形,其中能表示從集合M到集合N的函數(shù)關(guān)系的是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若隨機(jī)變量X的分布列為P(X=i)= (i=1,2,3,4),則P(X>2)=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=
          ( I)判斷f(x)的奇偶性;
          ( II)求證:f(x)+f( )為定值;
          (III)求 + + +f(1)+f(2015)+f(2016)+f(2017)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正半軸(兩坐標(biāo)系取相同的單位長(zhǎng)度)的直角坐標(biāo)系中,曲線的參數(shù)方程為: 為參數(shù)).

          (1)求曲線的直角坐標(biāo)方程與曲線的普通方程;

          (2)若用代換曲線的普通方程中的得到曲線的方程,若分別是曲線和曲線上的動(dòng)點(diǎn),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知奇函數(shù)f(x),當(dāng)x>0時(shí)f(x)=x+ ,則f(﹣1)=(
          A.1
          B.2
          C.﹣1
          D.﹣2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】觀察下列不等式:
          1+ ,1+ ,
          1+ + +

          照此規(guī)律,第五個(gè)不等式為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

          計(jì)

          愛好

          40

          20

          60

          不愛好

          20

          30

          50

          計(jì)

          60

          50

          110

          根據(jù)上述數(shù)據(jù)能得出的結(jié)論是(
          (參考公式與數(shù)據(jù):X2= .當(dāng)X2>3.841時(shí),有95%的把握說事件A與B有關(guān);當(dāng)X2>6.635時(shí),有99%的把握說事件A與B有關(guān); 當(dāng)X2<3.841時(shí)認(rèn)為事件A與B無關(guān).)
          A.有99%的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
          B.有99%的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
          C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
          D.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)在以為直徑的圓上, 垂直與圓所在平面, 的垂心.

          (1)求證:平面平面;

          (2)若,點(diǎn)在線段上,且,求三棱錐的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案