日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐P-ABCD的底面為直角梯形,AD∥BC,AD=2BC=2,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E為AD的中點(diǎn),△PAD為正三角形,M是棱PC上的一點(diǎn)(異于端點(diǎn)).

          (1)若M為PC的中點(diǎn),求證:PA∥平面BME;

          (2)是否存在點(diǎn)M,使二面角MBED的大小為30°.若存在,求出點(diǎn)M的位置;若不存在,說明理由.

          【答案】(1)見解析;(2)見解析

          【解析】試題分析:(1)連接ACBE于點(diǎn)F,根據(jù)平幾知識(shí)可得ABCE為平行四邊形,即得MFPA. 再根據(jù)線面平行判定定理得結(jié)論(2)先根據(jù)空間直角坐標(biāo)系,再設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解得平面法向量,根據(jù)向量數(shù)量積求向量夾角,最后根據(jù)二面角與向量夾角相等或互補(bǔ)關(guān)系列方程解得M坐標(biāo),即得點(diǎn)M的位置.

          試題解析:(1)證明:如圖,連接ACBE于點(diǎn)F,連接CE.

          由題意知BCAE,且BCAE,故四邊形ABCE為平行四邊形,∴FAC的中點(diǎn),在△PAC中,又由MPC的中點(diǎn),得MFPA.

          MF平面BME,PA平面BME,∴PA∥平面BME.

          (2)連接PE,則由題意知PE⊥平面ABCD.

          故以E為坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系Exyz,則

          E(0,0,0),P(0,0,),

          B(,0,0),C(,-1,0).

          設(shè)λ=(0<λ<1),

          M(λ,-λ, (1-λ)).

          =(λ,-λ, (1-λ)),=(,0,0).

          取平面DBE的法向量n1=(0,0,1),設(shè)平面BME的法向量n2=(x,yz),

          則由

          y,得n2.

          又由=cos30°,得λ,

          M.故存在點(diǎn)M滿足要求,且M為棱PC上靠近端點(diǎn)C的四等分點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)判斷函數(shù)的奇偶性,并加以證明;

          2)用定義證明上是減函數(shù);

          3)函數(shù)上是單調(diào)增函數(shù)還是單調(diào)減函數(shù)?(直接寫出答案,不要求寫證明過程).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線為參數(shù)),曲線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立直角坐標(biāo)系.

          (1)求曲線的極坐標(biāo)方程,直線的普通方程;

          (2)把直線向左平移一個(gè)單位得到直線,設(shè)與曲線的交點(diǎn)為 , 為曲線上任意一點(diǎn),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義在R上的函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y恒有f(x)f(y)f(xy),且當(dāng)x0時(shí),f(x)0,又f(1)=-.

          (1)求證:f(x)為奇函數(shù);

          (2)求證:f(x)R上是減函數(shù);

          (3)f(x)[3,6]上的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn)為FF關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P,過F軸的垂線交拋物線于MN兩點(diǎn),給出下列三個(gè)結(jié)論:

          必為直角三角形;

          ②直線必與拋物線相切;

          的面積為.其中正確的結(jié)論是___

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列命題正確的是( )

          A. 是向量,不共線的充要條件

          B. 在空間四邊形中,

          C. 在棱長(zhǎng)為1的正四面體中,

          D. 設(shè),三點(diǎn)不共線,為平面外一點(diǎn),若,則,,,四點(diǎn)共面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)在拋物線外,過點(diǎn)作拋物線的兩切線,設(shè)兩切點(diǎn)分別為,,記線段的中點(diǎn)為.

          (Ⅰ)求切線的方程;

          (Ⅱ)證明:線段的中點(diǎn)在拋物線上;

          (Ⅲ)設(shè)點(diǎn)為圓上的點(diǎn),當(dāng)取最大值時(shí),求點(diǎn)的縱坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,其左焦點(diǎn)與拋物線的焦點(diǎn)重合.

          (1)求橢圓的方程;

          (2)過動(dòng)點(diǎn)的直線交軸于點(diǎn),交橢圓于點(diǎn)在第一象限,,過點(diǎn)軸的垂線交橢圓于點(diǎn),連接并延長(zhǎng)交橢圓于另一點(diǎn).設(shè)直線的斜率分別為,證明:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某教育培訓(xùn)中心共有25名教師,他們?nèi)吭谛M庾∷?為完全起見,學(xué)校派專車接送教師們上下班.這個(gè)接送任務(wù)承包給了司機(jī)王師傅,正常情況下王師傅用34座的大客車接送教師.由于每次乘車人數(shù)不盡相同,為了解教師們的乘車情況,王師傅連續(xù)記錄了100次的乘車人數(shù),統(tǒng)計(jì)結(jié)果如下:

          乘車人數(shù)

          15

          16

          17

          18

          19

          20

          21

          22

          23

          24

          25

          頻數(shù)

          2

          4

          4

          10

          16

          20

          16

          12

          8

          6

          2

          以這100次記錄的各乘車人數(shù)的頻率作為各乘車人數(shù)的概率.

          (Ⅰ)若隨機(jī)抽查兩次教師們的乘車情況,求這兩次中至少有一次乘車人數(shù)超過18的概率;

          (Ⅱ)有一次,王師傅的大客車出現(xiàn)了故障,于是王師傅準(zhǔn)備租一輛小客車來臨時(shí)送一次需要乘車的教師.可供選擇的小客車只有20座的型車和22座的型車兩種, 型車一次租金為80元, 型車一次租金為90元.若本次乘車教師的人數(shù)超過了所租小客車的座位數(shù),王師傅還要付給多出的人每人20元錢供他們乘出租車.以王師傅本次付出的總費(fèi)用的期望值為依據(jù),判斷王師傅租哪種車較合算?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案