日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知在△ABC中,
          (1)求角B的大小;
          (2)若a+c=1,求b的取值范圍.

          【答案】
          (1)解:cosC+(cosA﹣ sinA)cosB=0,

          ∴﹣cos(A+B)+cosAcosB﹣ sinAcosB=0,

          化為sinAsinB﹣ sinAcosB=0,

          ∵sinA≠0,

          ∴sinB﹣ cosB=0,

          ∵cosB≠0,

          ∴tanB= ,

          ∵B∈(0,π).

          解得B=


          (2)解:∵a+c=1,

          ∴1≥2

          化為ac≤

          由余弦定理可得:b2=a2+c2﹣2accosB=(a+c)2﹣3ac=1﹣3ac≥ ,當(dāng)且僅當(dāng)a=c= 時(shí)取等號(hào).

          ∴b≥

          又b<a+c=1.

          ∴b的取值范圍是[ ,1).


          【解析】(1)由cosC+(cosA﹣ sinA)cosB=0,可得﹣cos(A+B)+cosAcosB﹣ sinAcosB=0,可化為tanB= ,即可得出.(2)由a+c=1,利用基本不等式的性質(zhì)化為ac≤ .由余弦定理可得:b2=a2+c2﹣2accosB=(a+c)2﹣3ac=1﹣3ac,利用基本不等式的性質(zhì)即可得出.
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用兩角和與差的余弦公式和兩角和與差的正弦公式的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握兩角和與差的余弦公式:;兩角和與差的正弦公式:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,橢圓長(zhǎng)軸端點(diǎn)為A,B,O為橢圓中心,F(xiàn)為橢圓的右焦點(diǎn),且 ,
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)記橢圓的上頂點(diǎn)為M,直線l交橢圓于P,Q兩點(diǎn),問(wèn):是否存在直線l,使點(diǎn)F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為得到函數(shù)y=sin(2x﹣ )的圖象,只需將函數(shù)y=sin2x的圖象(
          A.向左平移 個(gè)長(zhǎng)度單位
          B.向右平移 個(gè)長(zhǎng)度單位
          C.向左平移 個(gè)長(zhǎng)度單位
          D.向右平移 個(gè)長(zhǎng)度單位

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知a∈R,f(x)=aln(x﹣1)+x,f′(2)=2
          (1)求a的值,并求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程y=g(x);
          (2)設(shè)h(x)=mf′(x)+g(x)+1,若對(duì)任意的x∈[2,4],h(x)>0,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為CC1和BB1的中點(diǎn),則異面直線AE與D1F所成角的余弦值為(
          A.0
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某化工廠擬建一個(gè)下部為圓柱,上部為半球的容器(如圖,圓柱高為h,半徑為r,不計(jì)厚度,單位:米),按計(jì)劃容積為72π立方米,且h≥2r,假設(shè)其建造費(fèi)用僅與表面積有關(guān)(圓柱底部不計(jì)),已知圓柱部分每平方米的費(fèi)用為2千元,半球部分每平方米4千元,設(shè)該容器的建造費(fèi)用為y千元. (Ⅰ)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
          (Ⅱ)求建造費(fèi)用最小時(shí)的r.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓P過(guò)A(﹣8,0),B(2,0),C(0,4)三點(diǎn),圓Q:x2+y2﹣2ay+a2﹣4=0.
          (1)求圓P的方程;
          (2)如果圓P和圓Q相外切,求實(shí)數(shù)a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且bcosA= asinB.
          (1)求角A的大;
          (2)若a=1,求△ABC面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知首項(xiàng)為1的數(shù)列{an}的前n項(xiàng)和為Sn , 若點(diǎn)(Sn﹣1 , an)(n≥2)在函數(shù)y=3x+4的圖象上. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)若bn=log2 ,且bn=2n+1cn , 其中n∈N* , 求數(shù)列{cn}的前前n項(xiàng)和Tn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案