日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,橢圓長軸端點(diǎn)為A,B,O為橢圓中心,F(xiàn)為橢圓的右焦點(diǎn),且 ,
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)記橢圓的上頂點(diǎn)為M,直線l交橢圓于P,Q兩點(diǎn),問:是否存在直線l,使點(diǎn)F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

          【答案】
          (1)解.如圖建系,設(shè)橢圓方程為 ,則c=1

          又∵ 即(a+c)(a﹣c)=1=a2﹣c2,∴a2=2

          故橢圓方程為


          (2)解.假設(shè)存在直線l交橢圓于P,Q兩點(diǎn),且F恰為△PQM的垂心,則

          設(shè)P(x1,y1),Q(x2,y2),∵M(jìn)(0,1),F(xiàn)(1,0),故kPQ=1,

          于是設(shè)直線l為y=x+m,由 得3x2+4mx+2m2﹣2=0,

          又F為△PQM的垂心,則MP⊥FQ,

          又yi=xi+m(i=1,2)

          得x1(x2﹣1)+(x2+m)(x1+m﹣1)=0即2x1x2+(x1+x2)(m﹣1)+m2﹣m=0由韋達(dá)定理得

          解得 或m=1(舍)經(jīng)檢驗(yàn) 符合條件,

          此時(shí)直線l的方程為y=x﹣


          【解析】(1)設(shè)出橢圓的方程,根據(jù)題意可知c,進(jìn)而根據(jù) 求得a,進(jìn)而利用a和c求得b,則橢圓的方程可得.(2)假設(shè)存在直線l交橢圓于P,Q兩點(diǎn),且F恰為△PQM的垂心,設(shè)出P,Q的坐標(biāo),利用點(diǎn)M,F(xiàn)的坐標(biāo)求得直線PQ的斜率,設(shè)出直線l的方程,與橢圓方程聯(lián)立,由韋達(dá)定理表示出x1+x2和x1x2 , 進(jìn)而利用 求得m.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a∈R,函數(shù)f(x)=log2 +a).
          (1)當(dāng)a=5時(shí),解不等式f(x)>0;
          (2)若關(guān)于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個(gè)元素,求a的取值范圍.
          (3)設(shè)a>0,若對(duì)任意t∈[ ,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓O1的方程為x2+(y+1)2=4,圓O2的圓心為O2(2,1).
          (1)若圓O1與圓O2外切,求圓O2的方程;
          (2)若圓O1與圓O2交于A , B兩點(diǎn),且|AB|=2 ,求圓O2的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=4sinxcos(x+ )+m(x∈R,m為常數(shù)),其最大值為2. (Ⅰ)求實(shí)數(shù)m的值;
          (Ⅱ)若f(α)=﹣ (﹣ <α<0),求cos2α的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}、{bn}都是公差為1的等差數(shù)列,其首項(xiàng)分別為a1、b1 , 且a1+b1=5,a1 , b1∈N* , 設(shè)cn=a ,則數(shù)列{cn}的前10項(xiàng)和等于(
          A.55
          B.70
          C.85
          D.100

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列{an}滿足:a1=1,an+1+(﹣1)nan=2n﹣1.
          (1)求a2 , a4 , a6
          (2)設(shè)bn=a2n , 求數(shù)列{bn}的通項(xiàng)公式;
          (3)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求S2018

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某食品廠為了檢查甲乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本稱出它們的重量(單位:克),重量值落在(495,510]的產(chǎn)品為合格品,否則為不合格品.圖1是甲流水線樣本的頻率分布直方圖,表1是乙流水線樣本頻數(shù)分布表. 表1:(乙流水線樣本頻數(shù)分布表)

          產(chǎn)品重量(克)

          頻數(shù)

          (490,495]

          6

          (495,500]

          8

          (500,505]

          14

          (505,510]

          8

          (510,515]

          4

          (Ⅰ)若以頻率作為概率,試估計(jì)從甲流水線上任取5件產(chǎn)品,求其中合格品的件數(shù)X的數(shù)學(xué)期望; (Ⅱ)從乙流水線樣本的不合格品中任意取x2+y2=2件,求其中超過合格品重量的件數(shù)l:y=kx﹣2的分布列;(Ⅲ)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面 列聯(lián)表,并回答有多大的把握認(rèn)為“產(chǎn)品的包裝質(zhì)量與兩條資動(dòng)包裝流水線的選擇有關(guān)”.

          甲流水線

          乙流水線

          合計(jì)

          合格品

          a=

          b=

          不合格品

          c=

          d=

          合計(jì)

          n=

          P(K2≥k)

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          附:下面的臨界值表供參考:
          (參考公式: ,其中n=a+b+c+d)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】二手車經(jīng)銷商小王對(duì)其所經(jīng)營的某一型號(hào)二手汽車的使用年數(shù)x(0<x≤10)與銷售價(jià)格y(單位:萬元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):

          使用年數(shù)

          2

          4

          6

          8

          10

          售價(jià)

          16

          13

          9.5

          7

          4.5

          參考公式:
          (1)若這兩個(gè)變量呈線性相關(guān)關(guān)系,試求y關(guān)于x的回歸直線方程 ;
          (2)已知小王只收購使用年限不超過10年的二手車,且每輛該型號(hào)汽車的收購價(jià)格為ω=0.03x2﹣1.81x+16.2萬元,根據(jù)(1)中所求的回歸方程,預(yù)測x為何值時(shí),小王銷售一輛該型號(hào)汽車所獲得的利潤L(x)最大? (銷售一輛該型號(hào)汽車的利潤=銷售價(jià)格﹣收購價(jià)格)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在△ABC中,
          (1)求角B的大。
          (2)若a+c=1,求b的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案