日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知a∈R,f(x)=aln(x﹣1)+x,f′(2)=2
          (1)求a的值,并求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程y=g(x);
          (2)設(shè)h(x)=mf′(x)+g(x)+1,若對任意的x∈[2,4],h(x)>0,求實(shí)數(shù)m的取值范圍.

          【答案】
          (1)解:f(x)=aln(x﹣1)+x,

          導(dǎo)數(shù)f′(x)= +1,

          則f′(2)=a+1=2,

          解得a=1,f(x)=ln(x﹣1)+1,

          f′(x)= +1,

          可得曲線y=f(x)在點(diǎn)(2,f(2))處的切線斜率為1+1=2,

          f(2)=ln1+1=1,

          可得曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y﹣1=x﹣2,

          即為g(x)=x﹣1


          (2)解:h(x)=mf′(x)+g(x)+1=m( +1)+x,

          對任意的x∈[2,4],h(x)>0,

          即為m( +1)+x>0,x∈[2,4],

          即有m +x>0,

          即為m>(1﹣x)max,x∈[2,4],

          由1﹣x≤1﹣2=﹣1,可得m>﹣1.

          則實(shí)數(shù)m的取值范圍是(﹣1,+∞)


          【解析】(1)求得f(x)的導(dǎo)數(shù),由題意解得a=1,求出曲線y=f(x)在x=2處的切線的斜率和f(2),由點(diǎn)斜式方程可得切線方程;(2)由題意可得m( +1)+x>0,x∈[2,4],即為m>(1﹣x)max , x∈[2,4],由一次函數(shù)的單調(diào)性,可得最大值,即可得到m的范圍.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=4sinxcos(x+ )+m(x∈R,m為常數(shù)),其最大值為2. (Ⅰ)求實(shí)數(shù)m的值;
          (Ⅱ)若f(α)=﹣ (﹣ <α<0),求cos2α的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】二手車經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)x(0<x≤10)與銷售價格y(單位:萬元/輛)進(jìn)行整理,得到如下的對應(yīng)數(shù)據(jù):

          使用年數(shù)

          2

          4

          6

          8

          10

          售價

          16

          13

          9.5

          7

          4.5

          參考公式:
          (1)若這兩個變量呈線性相關(guān)關(guān)系,試求y關(guān)于x的回歸直線方程
          (2)已知小王只收購使用年限不超過10年的二手車,且每輛該型號汽車的收購價格為ω=0.03x2﹣1.81x+16.2萬元,根據(jù)(1)中所求的回歸方程,預(yù)測x為何值時,小王銷售一輛該型號汽車所獲得的利潤L(x)最大? (銷售一輛該型號汽車的利潤=銷售價格﹣收購價格)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于函數(shù)f(x)= ,有下列5個結(jié)論: ①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
          ②函數(shù)y=f(x)在區(qū)間[4,5]上單調(diào)遞增;
          ③f(x)=2kf(x+2k)(k∈N+),對一切x∈[0,+∞)恒成立;
          ④函數(shù)y=f(x)﹣ln(x﹣1)有3個零點(diǎn);
          ⑤若關(guān)于x的方程f(x)=m(m<0)有且只有兩個不同實(shí)根x1 , x2 , 則x1+x2=3.
          則其中所有正確結(jié)論的序號是 . (請寫出全部正確結(jié)論的序號)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,內(nèi)角A、B、C的對邊分別是a,b,c,且A、B、C成等差數(shù)列
          (1)若 ,求△ABC的面積
          (2)若sinA、sinB、sinC成等比數(shù)列,試判斷△ABC的形狀.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
          (1)若 ,求| |
          (2)若 夾角為銳角,求x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在△ABC中,
          (1)求角B的大;
          (2)若a+c=1,求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x2﹣(a+1)x+b.
          (1)若f(x)<0的解集為(﹣1,3),求a,b的值;
          (2)當(dāng)a=1時,若對任意x∈R,f(x)≥0恒成立,求實(shí)數(shù)b的取值范圍;
          (3)當(dāng)b=a時,解關(guān)于x的不等式f(x)<0(結(jié)果用a表示).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,已知圓C的方程:x2+y2﹣2x﹣4y+4=0,點(diǎn)P是直線l:x﹣2y﹣2=0上的任意點(diǎn),過P作圓的兩條切線PA,PB,切點(diǎn)為A、B,當(dāng)∠APB取最大值時.
          (Ⅰ)求點(diǎn)P的坐標(biāo)及過點(diǎn)P的切線方程;
          (Ⅱ)在△APB的外接圓上是否存在這樣的點(diǎn)Q,使|OQ|= (O為坐標(biāo)原點(diǎn)),如果存在,求出Q點(diǎn)的坐標(biāo),如果不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案