【題目】已知某種細(xì)菌的適宜生長(zhǎng)溫度為,為了研究該種細(xì)菌的繁殖數(shù)量
(單位:個(gè))隨溫度
(單位:
)變化的規(guī)律,收集數(shù)據(jù)如下:
溫度 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
繁殖數(shù)量 | 20 | 25 | 33 | 27 | 51 | 112 | 194 |
對(duì)數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如下表所示:
18 | 66 | 3.8 | 112 | 4.3 | 1428 | 20.5 |
其中,
.
(1)請(qǐng)繪出關(guān)于
的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷
與
哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量
關(guān)于
的回歸方程類(lèi)型(結(jié)果精確到0.1);
(2)當(dāng)溫度為時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?
參考公式:對(duì)于一組數(shù)據(jù),其回歸線
的斜率和截距的最小二乘估計(jì)分別為:
,
.參考數(shù)據(jù):
.
【答案】(1)見(jiàn)解析;(2)245
【解析】
(1)首先繪出散點(diǎn)圖,由散點(diǎn)圖確定符合題意的回歸方程類(lèi)型即可;
(2)結(jié)合(1)的結(jié)論可得,結(jié)合線性回歸方程計(jì)算公式可得回歸方程為
,據(jù)此可預(yù)測(cè)當(dāng)溫度為
時(shí)的細(xì)菌繁殖量.
(1)繪出的散點(diǎn)圖如圖所示,根據(jù)散點(diǎn)圖判斷更適合作為該種細(xì)菌的繁殖數(shù)量
關(guān)于
的回歸方程類(lèi)型;
(2)∵,∴
,
∴,
,
∴,
,當(dāng)溫度為
時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
的右焦點(diǎn)為
,離心率為
,
是橢圓
上位于第一象限內(nèi)的任意一點(diǎn),
為坐標(biāo)原點(diǎn),
關(guān)于
的對(duì)稱(chēng)點(diǎn)為
,
,圓
:
.
(1)求橢圓和圓
的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作
與圓
相切于點(diǎn)
,使得點(diǎn)
,點(diǎn)
在
的兩側(cè).求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,
,
,
為
的中點(diǎn).
(1)證明:平面
;
(2)若點(diǎn)在棱
上,且二面角
為
,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過(guò)點(diǎn)
.
(1)求雙曲線的方程;
(2)若點(diǎn)M(3,m)在雙曲線上,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,過(guò)點(diǎn)
的直線
的參數(shù)方程為
(
為參數(shù)),
與
交于
兩點(diǎn)
(1) 求的直角坐標(biāo)方程和
的普通方程;
(2) 若,
,
成等比數(shù)列,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在
處取得極小值
.
(1)求實(shí)數(shù)的值;
(2)設(shè),討論函數(shù)
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m,n為平面α外兩條直線,其在平面α內(nèi)的射影分別是兩條直線m1和n1,給出下列4個(gè)命題:①m1∥n1m∥n;②m∥nm1與n1平行或重合;③m1⊥n1m⊥n;④m⊥nm1⊥n1.其中所有假命題的序號(hào)是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將個(gè)不同的紅球和
個(gè)不同的白球,放入同一個(gè)袋中,現(xiàn)從中取出
個(gè)球.
(1)若取出的紅球的個(gè)數(shù)不少于白球的個(gè)數(shù),則有多少種不同的取法;
(2)取出一個(gè)紅球記分,取出一個(gè)白球記
分,若取出
個(gè)球的總分不少于
分,則有多少種不同的取法;
(3)若將取出的個(gè)球放入一箱子中,記“從箱子中任意取出
個(gè)球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到
個(gè)紅球并且恰有一次取到
個(gè)白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一半徑為的水輪,水輪圓心
距離水面2
,已知水輪每分鐘轉(zhuǎn)動(dòng)(按逆時(shí)針?lè)较?3圈,當(dāng)水輪上點(diǎn)
從水中浮現(xiàn)時(shí)開(kāi)始計(jì)時(shí),即從圖中點(diǎn)
開(kāi)始計(jì)算時(shí)間.
(1)當(dāng)秒時(shí)點(diǎn)
離水面的高度_________;
(2)將點(diǎn)距離水面的高度
(單位:
)表示為時(shí)間
(單位:
)的函數(shù),則此函數(shù)表達(dá)式為_______________ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com