日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)
          如圖,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長(zhǎng)都是地面邊長(zhǎng)的倍,P為側(cè)棱SD上的點(diǎn)。  
          (Ⅰ)求證:ACSD;
          (Ⅱ)若SD平面PAC,求二面角P-AC-D的大小
          (Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。
          (Ⅰ)略(Ⅱ)(Ⅲ)不在平面內(nèi),故
          解法一:
          (Ⅰ)連BD,設(shè)AC交BD于O,由題意。在正方形ABCD中,,所以,得.
          (Ⅱ)設(shè)正方形邊長(zhǎng),則
          ,所以,
          ,由(Ⅰ)知,所以,
          ,所以是二面角的平面角。
          ,知,所以,
          即二面角的大小為
          (Ⅲ)在棱SC上存在一點(diǎn)E,使
          由(Ⅱ)可得,故可在上取一點(diǎn),使,過的平行線與的交點(diǎn)即為。連BN。在中知,又由于,故平面,得,由于,故.
          解法二:
          (Ⅰ);連,設(shè)交于,由題意知.以O(shè)為坐標(biāo)原點(diǎn),分別為軸、軸、軸正方向,建立坐標(biāo)系如圖。
          設(shè)底面邊長(zhǎng)為,則高
          于是
                
          故       從而  
          (Ⅱ)由題設(shè)知,平面的一個(gè)法向量,平面的一個(gè)法向量,設(shè)所求二面角為,則,所求二面角的大小為
          (Ⅲ)在棱上存在一點(diǎn)使.
          由(Ⅱ)知是平面的一個(gè)法向量,
          且  
          設(shè)


          即當(dāng)時(shí),
          不在平面內(nèi),故
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知直三棱柱ABC—A1B1C1的側(cè)棱長(zhǎng)與底面三角形的各邊長(zhǎng)都等于a,D為BC的中點(diǎn),(1)求證:A1B∥平面AC1D.
          (2)若點(diǎn)M為CC1中點(diǎn),求證:平面A1B1M⊥平面ADC1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知四棱錐中,平面,底面為菱形,=60,,是線段的中點(diǎn).
          (1)求證:;
          (2)求平面與平面所成銳二面角的大小;
          (3)在線段上是否存在一點(diǎn),使得∥平面PAE,并給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分12分) 如圖,正三棱柱ABC—A1B1C1的所有棱長(zhǎng)均為2,P是側(cè)棱AA1上任意一點(diǎn).

          (1)求證:B1P不可能與平面ACC1A1垂直;
          (2)當(dāng)BC1⊥B1P時(shí),求線段AP的長(zhǎng);
          (3)在(2)的條件下,求二面角CB1PC1的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四棱錐S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,點(diǎn)E是SD上的點(diǎn),且DE=a(0<≦1).    
          (Ⅰ)求證:對(duì)任意的(0、1),都有AC⊥BE:
          (Ⅱ)若二面角C-AE-D的大小為600C,求的值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖:一個(gè)圓錐的底面半徑為2,高為6,在其中有一個(gè)半徑為x的內(nèi)接圓柱.
          (1)試用x表示圓柱的體積;
          (2)當(dāng)x為何值時(shí),圓柱的側(cè)面積最大,最大值是多少.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱錐D-ABC中,給出下列三個(gè)命題:
          ①△DBC是等邊三角形;
          ②AC⊥BD;
          ③三棱錐D-ABC的體積是
          2
          6

          其中正確命題的序號(hào)是______.(寫出所有正確命題的序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          長(zhǎng)方體ABCDA1B1C1D1的8個(gè)頂點(diǎn)在同一球面上,且AB=2,AD=,AA1=1,則頂點(diǎn)A、B間的球面距離是           (   )
          A.2B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知是空間不同的直線,是不同的平面,給出下列四個(gè)命題:
                     ②
                    ④
          其中為真命題的是(    )
          A.①③B.①④C.②③D.③④

          查看答案和解析>>

          同步練習(xí)冊(cè)答案