日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù).

          (Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)當(dāng)時(shí),若函數(shù)與函數(shù)的圖像總有兩個(gè)交點(diǎn),設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為,.

          ①求的取值范圍;

          ②求證:.

          【答案】(Ⅰ)當(dāng)時(shí),單調(diào)遞增區(qū)間是單調(diào)遞減區(qū)間是.

          (Ⅱ)②見(jiàn)解析

          【解析】

          (Ⅰ)求出函數(shù)的導(dǎo)數(shù),結(jié)合題中所給的的條件,令導(dǎo)數(shù)大于零和導(dǎo)數(shù)小于零,分別求出函數(shù)的單調(diào)增區(qū)間和單調(diào)減區(qū)間;

          (Ⅱ)函數(shù)與函數(shù)的圖像總有兩個(gè)交點(diǎn),等價(jià)于函數(shù) 有兩個(gè)零點(diǎn),對(duì)函數(shù)求導(dǎo),研究函數(shù)的單調(diào)性,從而求得參數(shù)m的范圍,之后根據(jù)兩個(gè)零點(diǎn)的條件,以及函數(shù)圖象的特點(diǎn),證得結(jié)果.

          (Ⅰ)由已知得,

          ,,

          ,

          所以,當(dāng)時(shí),單調(diào)遞增區(qū)間是單調(diào)遞減區(qū)間是.

          (Ⅱ)令 ,

          ①解法一:由,;,易知,的極大值點(diǎn).

          當(dāng)時(shí),當(dāng)時(shí),.

          由題意,只需滿足,

          的取值范圍是.

          解法二:,

          ,;易知,為極大值點(diǎn).

          時(shí)取得極小值,

          由題意,只需滿足解得.

          ②由題意知,為函數(shù) 的兩個(gè)零點(diǎn),由①知,不妨設(shè),,且函數(shù)上單調(diào)遞增,

          欲證,只需證明,

          所以,只需證明.

          ,

          ,∴,

          所以,,上為增函數(shù),所以,,

          成立,所以,.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直三棱柱中,,,上的點(diǎn),平面.

          (1)求證:平面;

          (2)若,且,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲、乙兩人參加某電視臺(tái)舉辦的答題闖關(guān)游戲,按照規(guī)則:每人從備選的10道題中一次性抽取3道題獨(dú)立作答,至少答對(duì)2道題即闖關(guān)成功.已知10道備選題中,甲只能答對(duì)其中的6道題,乙答對(duì)每道題的概率都是

          Ⅰ)求甲闖關(guān)成功的概率;

          Ⅱ)設(shè)乙答對(duì)題目的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱柱中,已知四邊形為矩形,,,的角平分線.

          1)求證:平面平面;

          2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】合肥一中、六中為了加強(qiáng)交流,增進(jìn)友誼,兩校準(zhǔn)備舉行一場(chǎng)足球賽,由合肥一中版畫社的同學(xué)設(shè)計(jì)一幅矩形宣傳畫,要求畫面面積為,畫面的上、下各留空白,左、右各留空白.

          (1)如何設(shè)計(jì)畫面的高與寬的尺寸,才能使宣傳畫所用紙張面積最小?

          (2)設(shè)畫面的高與寬的比為,且,求為何值時(shí),宣傳畫所用紙張面積最小?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】高血壓高血糖和高血脂統(tǒng)稱“三高”.如圖是西南某地區(qū)從2010年至2016年患“三高”人數(shù)y(單位:千人)的折線圖.

          1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)求出相關(guān)系數(shù)(精確到0.01)并加以說(shuō)明;

          2)建立關(guān)于的回歸方程,預(yù)測(cè)2018年該地區(qū)患“三高”的人數(shù).

          參考數(shù)據(jù):,,.參考公式:相關(guān)系數(shù) 回歸方程 中斜率和截距的最小二乘法估計(jì)公式分別為:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AB是圓O的直徑,C是圓上的點(diǎn),平面PAC⊥平面ABCPAAB.

          1)求證:PA⊥平面ABC;

          2)若PA=AC=2,求點(diǎn)A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)為常數(shù)).

          (Ⅰ)討論函數(shù)的單調(diào)性;

          (Ⅱ)是否存在正實(shí)數(shù),使得對(duì)任意,都有,若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由;

          (Ⅲ)當(dāng)時(shí), ,對(duì)恒成立,求整數(shù)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司生產(chǎn)一種產(chǎn)品,每年投入固定成本0.5萬(wàn)元,此外每生產(chǎn)100件這種產(chǎn)品還需要增加投資0.25萬(wàn)元,經(jīng)預(yù)測(cè)可知,市場(chǎng)對(duì)這種產(chǎn)品的年需求量為500件,當(dāng)出售的這種產(chǎn)品的數(shù)量為t(單位:百件)時(shí),銷售所得的收入約為(萬(wàn)元)

          1)若該公司的年產(chǎn)量為x(單位:百件),試把該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤(rùn)表示為年產(chǎn)量x的函數(shù);

          2)當(dāng)這種產(chǎn)品的年產(chǎn)量為多少時(shí),當(dāng)年所得利潤(rùn)最大?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案