【題目】四邊形OABC的四個(gè)頂點(diǎn)坐標(biāo)分別為O(0,0)、A(6,2)、B(4,6)、C(2,6),直線y=kx(<k<3)分四邊形OABC為兩部分,S表示靠近x軸一側(cè)的那一部分的面積.
(1)求S=f(k)的函數(shù)表達(dá)式;
(2)當(dāng)k為何值時(shí),直線y=kx將四邊形OABC分為面積相等的兩部分?
【答案】(1);(2)
.
【解析】試題分析:(1)由題意畫(huà)出圖象,討論當(dāng),此時(shí)要求的面積為三角形,由|OA|及交點(diǎn)到直線OA的距離求解即可;當(dāng)
此時(shí)要求的面積為四邊形,以OB為底邊分成上下兩個(gè)三角形求面積和即可;
(2)由(1)和條件列出方程求出k的值.
試題解析:
(1)因?yàn)?/span>,所以需分兩種情況:
①<k<
時(shí),直線y=kx與直線AB:2x+y=14相交.
由得交點(diǎn)P1(
,
),
又點(diǎn)P1到直線OA:x-3y=0的距離為
d=,
∴S=|OA|·d=
.
②當(dāng)≤k<3時(shí),直線y=kx與直線BC:y=6交于P2(
,6).∴S△OP2C=
|P2C|·6=
.
又S△OAB+S△OBC=S四邊形OABC=20.
∴S=20-=26-
.
故S=f(k)=
(2)若直線y=kx平分四邊形OABC的面積,
由(1)知,只需=10,解得k=
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l與圓C:x2+y2+2x﹣4y+a=0相交于A,B兩點(diǎn),弦AB的中點(diǎn)為M(0,1).
(1)若圓C的半徑為 ,求實(shí)數(shù)a的值;
(2)若弦AB的長(zhǎng)為6,求實(shí)數(shù)a的值;
(3)當(dāng)a=1時(shí),圓O:x2+y2=2與圓C交于M,N兩點(diǎn),求弦MN的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合M={x|x<2},集合N={x|0<x<1},則下列關(guān)系中正確的是( )
A.M∪N=R
B.M∪RN=R
C.N∪RM=R
D.M∩N=M
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓O的直徑,G是AB延長(zhǎng)線上的一點(diǎn),GCD是圓O的割線,過(guò)點(diǎn)G作AG的垂線,交直線AC于點(diǎn)E,交直線 AD于點(diǎn)F,過(guò)點(diǎn)G作圓O的切線,切點(diǎn)為H.
(1)求證:C,D,E,F(xiàn)四點(diǎn)共圓;
(2)若GH=8,GE=4,求EF的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
的圖象上相鄰兩對(duì)稱(chēng)軸的距離為
.
(1)若,求
的遞增區(qū)間;
(2)若時(shí),若
的最大值與最小值之和為5,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的對(duì)稱(chēng)中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F,F(xiàn),左右頂點(diǎn)分別為A,B,且|F1F2|=4,|AB|=4
(1)求橢圓的方程;
(2)過(guò)F1的直線l與橢圓C相交于M,N兩點(diǎn),若△MF2N的面積為 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列,設(shè)
表示數(shù)列
前
項(xiàng)
,
,
,
中的最大項(xiàng).?dāng)?shù)列
滿(mǎn)足:
.
()若
,求
的前
項(xiàng)和.
()設(shè)數(shù)列
為等差數(shù)列,證明:
或者
(
為常數(shù)),
,
,
,
.
()設(shè)數(shù)列
為等差數(shù)列,公差為
,且
.
記,
求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com