日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)
          (1)若是函數(shù)的極值點,是函數(shù)的兩個不同零點,且,求;
          (2)若對任意,都存在為自然對數(shù)的底數(shù)),使得成立,求實數(shù)的取值范圍.

          (1);(2) 

          解析試題分析:(1)根據(jù)極值的定義,對函數(shù)求導(dǎo),利用導(dǎo)數(shù)為求出對應(yīng)的值為極值點,可得到一個關(guān)于的等式,又由函數(shù)零點的定義,可得,這樣就可解得的值;(2)由題中所給任意,可設(shè)出關(guān)于的函數(shù),又由的最大值,根據(jù)要求,使得成立,可將問題轉(zhuǎn)化為在上有解,結(jié)合函數(shù)特點可求導(dǎo)數(shù),由導(dǎo)數(shù)與的大小關(guān)系,可想到對的大小關(guān)系進行分類討論,利用函數(shù)的最值與的大小關(guān)系,從而得到的取值范圍.
          試題解析:解(1),∵是函數(shù)的極值點,∴.∵1是函數(shù)的零點,得
          解得.          4分
          ,,
          ,所以,故.    8分
          (2)令,則為關(guān)于的一次函數(shù)且為增函數(shù),根據(jù)題意,對任意,都存在,使得成立,則有解,
          ,只需存在使得即可,
          由于=,
          ,
          在(1,e)上單調(diào)遞增,,            10分
          ①當,即時,,即在(1,e)上單調(diào)遞增,∴,不符合題意.             12分
          ②當,即時,,
          ,則,所以在(1,e)上恒成立,即恒成立,∴在(1,e)上單調(diào)遞減,
          ∴存在,使得,符合題意.             14分
          ,則

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知
          (1)若存在使得≥0成立,求的范圍
          (2)求證:當>1時,在(1)的條件下,成立

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)
          (Ⅰ)設(shè),,證明:在區(qū)間內(nèi)存在唯一的零點;
          (Ⅱ)設(shè),若對任意,有,求的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)若函數(shù)在定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
          (2)設(shè),若函數(shù)存在兩個零點,且實數(shù)滿足,問:函數(shù)處的切線能否平行于軸?若能,求出該切線方程;若不能,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)
          (1)如果,求函數(shù)的單調(diào)遞減區(qū)間;
          (2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;
          (3)證明:當時,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (Ⅰ)若處的切線與直線平行,求的單調(diào)區(qū)間;
          (Ⅱ)求在區(qū)間上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)
          (1)若,求最大值;
          (2)已知正數(shù),滿足.求證:;
          (3)已知,正數(shù)滿足.證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù),;
          (1)求證:函數(shù)上單調(diào)遞增;
          (2)設(shè),,若直線軸,求兩點間的最短距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)上為增函數(shù),且,,
          (1)求的值;
          (2)當時,求函數(shù)的單調(diào)區(qū)間和極值;
          (3)若在上至少存在一個,使得成立,求的取值范圍.

          查看答案和解析>>