日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義:如果函數(shù)在區(qū)間上存在,滿足則稱函數(shù)在區(qū)間上的一個(gè)雙中值函數(shù),已知函數(shù)是區(qū)間上的雙中值函數(shù),則實(shí)數(shù)的取值范圍是  (  )
          A.B.C.D.
          B

          試題分析:.由題意得:上有兩個(gè)不同的根.
          ,則.
          所以的極小值.
          所以.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)的圖象在上連續(xù),定義:,.其中,表示函數(shù)上的最小值,表示函數(shù)上的最大值.若存在最小正整數(shù),使得對(duì)任意的成立,則稱函數(shù)上的“階收縮函數(shù)”.
          (Ⅰ)若,試寫出,的表達(dá)式;
          (Ⅱ)已知函數(shù),試判斷是否為上的“階收縮函數(shù)”.如果是,求出對(duì)應(yīng)的;如果不是,請(qǐng)說明理由;
          (Ⅲ)已知,函數(shù)上的2階收縮函數(shù),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)
          (Ⅰ)當(dāng)時(shí),求曲線處的切線方程;
          (Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
          (Ⅲ)若在上存在一點(diǎn),使得成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)
          (I)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
          (II)當(dāng)a≤0時(shí),討論函數(shù)f(x)的單調(diào)性;
          (III)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)的最大值為0,其中。
          (1)求的值;
          (2)若對(duì)任意,有成立,求實(shí)數(shù)的最大值;
          (3)證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)的定義域?yàn)閰^(qū)間.
          (1)求函數(shù)的極大值與極小值;
          (2)求函數(shù)的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知函數(shù)的導(dǎo)函數(shù)圖象如圖所示,若為銳角三角形,則一定成立的是(  )
          A.B.
          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          曲線在點(diǎn)處的切線方程為________________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          ,則等于            .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案