【題目】如圖,已知橢圓C:的左、右頂點(diǎn)分別為
右焦點(diǎn)為
,右準(zhǔn)線l的方程為
,過(guò)焦點(diǎn)F的直線與橢圓C相交于點(diǎn)A,B(不與點(diǎn)
重合).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線AB的傾斜角為45°時(shí),求弦AB的長(zhǎng);
(3)設(shè)直線交l于點(diǎn)M,求證:B,
,M三點(diǎn)共線.
【答案】(1)(2)
(3)見(jiàn)解析
【解析】
(1)由題意結(jié)合橢圓性質(zhì)可得、
,即可得解;
(2)由題意直線,設(shè)
,
,聯(lián)立方程組可得
,
,再利用弦長(zhǎng)公式即可得解;
(3)設(shè)直線,
,
,易得
,轉(zhuǎn)化結(jié)論為證明
成立,聯(lián)立方程組即可得
,
,進(jìn)而可得
,即可得證.
(1)設(shè)橢圓C的焦距為2c.由題意得.
又右準(zhǔn)線l的方程為,所以
,
所以,
,
所以橢圓的標(biāo)準(zhǔn)方程為
,
(2)設(shè),
,
因?yàn)橹本的傾斜角為
且過(guò)點(diǎn)
,
所以直線,
聯(lián)立,消去
得
,
,
所以,
,
所以;
(3)由題意可得,
,
因?yàn)橹本AB的斜率不為0,
所以設(shè)直線,
,
,
則直線,令
,得
,所以
;
要證,
,
三點(diǎn)共線,只需證
,
即證,即證
;
聯(lián)立,消去x得
,
,
所以,
,
所以,
所以,
,
三點(diǎn)共線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓、拋物線
的焦點(diǎn)均在
軸上,
的中心和
的頂點(diǎn)均為原點(diǎn)
,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
3 |
| 4 | ||
0 |
|
(Ⅰ)求的標(biāo)準(zhǔn)方程;
(Ⅱ)請(qǐng)問(wèn)是否存在直線滿足條件:①過(guò)
的焦點(diǎn)
;②與
交不同兩點(diǎn)
且滿足
?若存在,求出直線
的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三人投籃的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲與乙的命中率之和.若甲與乙各投籃一次,每人投籃相互獨(dú)立,則他們都命中的概率為0.18.
(1)求甲、乙、丙三人投籃的命中率;
(2)現(xiàn)要求甲、乙、丙三人各投籃一次,假設(shè)每人投籃相互獨(dú)立,記三人命中總次數(shù)為,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,的頂點(diǎn)
,
,且
、
、
成等差數(shù)列.
(1)求的頂點(diǎn)
的軌跡方程;
(2)直線與頂點(diǎn)
的軌跡交于
兩點(diǎn),當(dāng)線段
的中點(diǎn)
落在直線
上時(shí),試問(wèn):線段
的垂直平分線是否恒過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】跨年迎新聯(lián)歡晚會(huì)簡(jiǎn)稱跨年晚會(huì),是指每年陽(yáng)歷年末12月31日晚上各電視臺(tái)和政府為喜迎新而精心策劃的演唱會(huì)活動(dòng),跨年晚會(huì)首次出現(xiàn)在港臺(tái)地區(qū),跨年晚會(huì)因形式和舉辦地不同因而名稱也不同,如央視啟航2020跨年盛典,湖南衛(wèi)視跨年演唱會(huì),東方衛(wèi)視迎新晚會(huì)等.某電視臺(tái)為了了解2020年舉辦的跨年迎新晚會(huì)觀眾的滿意度,現(xiàn)分別隨機(jī)選出名觀眾對(duì)迎新晚會(huì)的質(zhì)量評(píng)估評(píng)分,最高分為
分,綜合得分情況如下表所示:
綜合得分 | |||||||
觀眾人數(shù) | 5 | 10 | 25 | 30 | 15 | 10 | 5 |
根據(jù)表中的數(shù)據(jù),回答下列問(wèn)題:
(1)根據(jù)表中的數(shù)據(jù),繪制這位觀眾打分的頻率分布直方圖;
(2)已知觀眾的評(píng)分近似服從
,其中
是反應(yīng)隨機(jī)變量
取值的平均水平的特征數(shù),工作人員在分析數(shù)據(jù)時(shí)發(fā)現(xiàn),可用
位觀眾評(píng)分的平均數(shù)估計(jì)
,但由于評(píng)分觀眾人數(shù)較少,誤差較大,所以不能直接用
位觀眾評(píng)分的標(biāo)準(zhǔn)差的值估計(jì)
,而在這
位觀眾打分的頻率分布直方圖的基礎(chǔ)上依據(jù)
來(lái)估計(jì)
更科學(xué)合理,試求
和
的估計(jì)值(
的結(jié)果精確到小數(shù)點(diǎn)后兩位).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個(gè)面均為直角三角形的四面體.如圖在塹堵中,
,
.給出下列四個(gè)結(jié)論:
①四棱錐為陽(yáng)馬;
②直線與平面
所成角為
;
③當(dāng)時(shí),異面直線
與
所成的角的余弦值為
;
④當(dāng)三棱錐體積最大時(shí),四棱錐
的外接球的表面積為
.
其中,所有正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下:
等級(jí) | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | a | 24 | b |
(1)由該題中頻率分布直方圖求測(cè)試成績(jī)的平均數(shù)和中位數(shù);
(2)其他條件不變?cè)谠u(píng)定等級(jí)為“合格”的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測(cè)試得分低于80分的前提下,第2次抽取的測(cè)試得分仍低于80分的概率;
(3)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再?gòu)倪@10人中任選4人,記所選4人的量化總分為,求
的數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
,曲線C的極坐標(biāo)方程為
.
(Ⅰ)求直線l和曲線C的直角坐標(biāo)方程;
(Ⅱ)點(diǎn)M為曲線C上一點(diǎn),求M到直線l的最小距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com