【題目】如圖,在正四棱錐中,
,
,
分別是
,
,
的中點(diǎn),動(dòng)點(diǎn)
在線段
上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論中恒成立的為( ).
A.B.
C.
面
D.
面
【答案】AC
【解析】
如圖所示,連接相交于點(diǎn)
,連接
,
,由正四棱錐性質(zhì)可得
底面,
,進(jìn)而得到
,可得
平面
,利用三角形的中位線結(jié)合面面平行判定定理得平面
平面
,進(jìn)而得到
平面
,隨即可判斷A;由異面直線的定義可知不可能
;由A易得C正確;由A同理可得:
平面
,可用反證法可說明D.
如圖所示,連接相交于點(diǎn)
,連接
,
.
由正四棱錐,可得
底面
,
,所以
.
因?yàn)?/span>,所以
平面
,
因?yàn)?/span>,
,
分別是
,
,
的中點(diǎn),
所以,
,而
,
所以平面平面
,所以
平面
,所以
,故A正確;
由異面直線的定義可知:與
是異面直線,不可能
,因此B不正確;
平面平面
,所以
平面
,因此C正確;
平面
,若
平面
,則
,與
相矛盾,
因此當(dāng)與
不重合時(shí),
與平面
不垂直,即D不正確.
故選:AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
(
)的離心率為
,右焦點(diǎn)為
,斜率為1的直線
與橢圓
交于
、
兩點(diǎn),以
為底邊作等腰三角形,頂點(diǎn)為
.
(1)求橢圓的方程;
(2)求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1) 討論的單調(diào)性;
(2) 設(shè),當(dāng)
時(shí),
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小李從網(wǎng)上購(gòu)買了一件商品,快遞員計(jì)劃在下午5:00-6:00之間送貨上門,已知小李下班到家的時(shí)間為下午5:30-6:00.快遞員到小李家時(shí),如果小李未到家,則快遞員會(huì)電話聯(lián)系小李.若小李能在10分鐘之內(nèi)到家,則快遞員等小李回來;否則,就將商品存放在快遞柜中.則小李需要去快遞柜收取商品的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)和動(dòng)點(diǎn)
,以線段
為直徑的圓內(nèi)切于圓
.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)已知點(diǎn),
,經(jīng)過點(diǎn)
的直線
與動(dòng)點(diǎn)
的軌跡交于
,
兩點(diǎn),求證:直線
與直線
的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級(jí)甲、乙兩個(gè)小組各有10位同學(xué),在一次期中考試中,兩個(gè)小組同學(xué)的數(shù)學(xué)成績(jī)?nèi)缦拢?/span>
甲組:94,69,73,86,74,75,86,88,97,98;
乙組:75,92,82,80,95,81,83,91,79,82.
畫出這兩個(gè)小組同學(xué)數(shù)學(xué)成績(jī)的莖葉圖,判斷哪一個(gè)小組同學(xué)的數(shù)學(xué)成績(jī)差異較大,并說明理由;
從這兩個(gè)小組數(shù)學(xué)成績(jī)?cè)?0分以上的同學(xué)中,隨機(jī)選取2人在全班介紹學(xué)習(xí)經(jīng)驗(yàn),求選出的2位同學(xué)不在同一個(gè)小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)說偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個(gè)如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點(diǎn)為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.
(1)試計(jì)算出圖案中圓柱與球的體積比;
(2)假設(shè)球半徑.試計(jì)算出圖案中圓錐的體積和表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在生物研究性學(xué)習(xí)中,對(duì)春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,于是他在4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù) | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,求這2天發(fā)芽的種子數(shù)均不小于25的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請(qǐng)根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com