日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線C)的焦點(diǎn)F到準(zhǔn)線l的距離為2,直線過點(diǎn)F且與拋物線交于M、N兩點(diǎn),直線過坐標(biāo)原點(diǎn)O及點(diǎn)M且與l交于點(diǎn)P,點(diǎn)Q在線段.

          (1)求直線的斜率;

          (2)若,,成等差數(shù)列,求點(diǎn)Q的軌跡方程.

          【答案】(1)0;(2).

          【解析】

          (1)先求拋物線方程,再設(shè)直線方程以及M,N坐標(biāo),解得P點(diǎn)坐標(biāo),根據(jù)斜率公式化簡直線的斜率,最后聯(lián)立直線方程與拋物線方程,利用韋達(dá)定理代入化簡即得結(jié)果;

          (2) 設(shè),根據(jù)等差中項(xiàng)性質(zhì)以及弦長公式化簡條件得,再根據(jù)(1)中韋達(dá)定理化簡右邊式子,最后根據(jù)代入化簡得點(diǎn)Q的軌跡方程.

          (1)依題意,可得,所以拋物線C.

          設(shè)直線,聯(lián)立,得.

          設(shè),,易知,,則,

          直線.

          因?yàn)闇?zhǔn)線l,故.

          故直線的斜率為.

          (2)設(shè).

          由(1)可得,.

          由題可知,

          .

          因?yàn)?/span>,所以

          化簡可得.

          故點(diǎn)Q的軌跡方程為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正四棱柱中,,點(diǎn)的中點(diǎn),點(diǎn)上,設(shè)二面角的大小為.

          1)當(dāng)時(shí),求的長;

          2)當(dāng)時(shí),求的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,ABAD,ADBCAPABAD=1.

          (Ⅰ)若直線PBCD所成角的大小為,BC的長;

          (Ⅱ)求二面角BPDA的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖是某公司一種產(chǎn)品的日銷售量(單位:百件)關(guān)于日最高氣溫(單位:)的散點(diǎn)圖.

          數(shù)據(jù):

          13

          15

          19

          20

          21

          26

          28

          30

          18

          36

          1)請?zhí)蕹唤M數(shù)據(jù),使得剩余數(shù)據(jù)的線性相關(guān)性最強(qiáng),并用剩余數(shù)據(jù)求日銷售量關(guān)于日最高氣溫的線性回歸方程;

          2)根據(jù)現(xiàn)行《重慶市防暑降溫措施管理辦法》.若氣溫超過36度,職工可享受高溫補(bǔ)貼.已知某日該產(chǎn)品的銷售量為53.1,請用(1)中求出的線性回歸方程判斷該公司員工當(dāng)天是否可享受高溫補(bǔ)貼?

          附:,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線的焦距為,直線)與交于兩個(gè)不同的點(diǎn)、,且時(shí)直線的兩條漸近線所圍成的三角形恰為等邊三角形.

          (1)求雙曲線的方程;

          (2)若坐標(biāo)原點(diǎn)在以線段為直徑的圓的內(nèi)部,求實(shí)數(shù)的取值范圍;

          (3)設(shè)分別是的左、右兩頂點(diǎn),線段的垂直平分線交直線于點(diǎn),交直線于點(diǎn),求證:線段軸上的射影長為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖(1)在等腰直角中,斜邊,的中點(diǎn),將沿折疊得到如圖(2)所示的三棱錐.若三棱錐的外接球的半徑為3,則的余弦值______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知首項(xiàng)為的數(shù)列各項(xiàng)均為正數(shù),且,.

          (1)若數(shù)列的通項(xiàng)滿足,且,求數(shù)列的前n項(xiàng)和為;

          (2)若數(shù)列的通項(xiàng)滿足,前n項(xiàng)和為,當(dāng)數(shù)列是等差數(shù)列時(shí),對任意的,均存在,使得成立,求滿足條件的所有整數(shù)構(gòu)成的集合.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某海域有兩個(gè)島嶼,島在島正東4海里處,經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)出過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系.

          1)求曲線的標(biāo)準(zhǔn)方程;

          2)某日,研究人員在兩島同時(shí)用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),兩島收到魚群在處反射信號的時(shí)間比為,問你能否確定處的位置(即點(diǎn)的坐標(biāo))?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中,e是自然對數(shù)的底數(shù).

          1)若上的增函數(shù),求實(shí)數(shù)a的取值范圍;

          2)若,證明:.

          查看答案和解析>>

          同步練習(xí)冊答案