日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖(1)在等腰直角中,斜邊的中點(diǎn),將沿折疊得到如圖(2)所示的三棱錐.若三棱錐的外接球的半徑為3,則的余弦值______.

          【答案】

          【解析】

          根據(jù)題意,先找到球心的位置,再由球的半徑是3,以及已有的邊的長(zhǎng)度和角度關(guān)系,分析即得的值,進(jìn)而可得它的余弦值。

          由題,球是三棱錐的外接球,設(shè)其半徑為R,球心O到各頂點(diǎn)的距離相等,如圖,平面,取CD中點(diǎn)E,的中點(diǎn)G,連接CG,DG,,平面,B關(guān)于平面CDG對(duì)稱,在平面CDG內(nèi),作線段CD的垂直平分線,則球心O在線段CD的垂直平分線上,設(shè)為圖中的O點(diǎn)位置,過O作直線CD的平行線,交平面于點(diǎn)F,則平面,且OF=DE=1,在平面內(nèi),,即是直角三角形,且斜邊,,,,在中,有,即,解得,.

          故答案為:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知非空集合是由一些函數(shù)組成,滿足如下性質(zhì):對(duì)任意,均存在反函數(shù),且;對(duì)任意,方程均有解;對(duì)任意、,若函數(shù)為定義在上的一次函數(shù),則.

          1)若,,均在集合中,求證:函數(shù);

          2)若函數(shù))在集合中,求實(shí)數(shù)的取值范圍;

          3)若集合中的函數(shù)均為定義在上的一次函數(shù),求證:存在一個(gè)實(shí)數(shù),使得對(duì)一切,均有.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在空間直角坐標(biāo)系O-xyz中,已知正四棱錐PABCD的高OP2,點(diǎn)B,DC,A分別在x軸和y軸上,且AB ,點(diǎn)M是棱PC的中點(diǎn).

          1)求直線AM與平面PAB所成角的正弦值;

          2)求二面角A-PB-C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】、兩點(diǎn)分別在函數(shù)的圖像上,且關(guān)于直線對(duì)稱,則稱的一對(duì)“伴點(diǎn)”(、視為相同的一對(duì)).已知,,若存在兩對(duì)“伴點(diǎn)”,則實(shí)數(shù)的取值范圍為________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線C)的焦點(diǎn)F到準(zhǔn)線l的距離為2,直線過點(diǎn)F且與拋物線交于MN兩點(diǎn),直線過坐標(biāo)原點(diǎn)O及點(diǎn)M且與l交于點(diǎn)P,點(diǎn)Q在線段.

          (1)求直線的斜率;

          (2)若,,成等差數(shù)列,求點(diǎn)Q的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

          (2)當(dāng)時(shí),若函數(shù)的兩個(gè)極值點(diǎn)分別為,證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

          (2)當(dāng)時(shí),若函數(shù)的兩個(gè)極值點(diǎn)分別為,證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】現(xiàn)有下列四個(gè)結(jié)論,其中所有正確結(jié)論的編號(hào)是___________.

          ①若,則的最大值為;

          ②若,,是等差數(shù)列的前項(xiàng),則

          ③“”的一個(gè)必要不充分條件是“”;

          ④“”的否定為“,”.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)。

          (1)求的單調(diào)區(qū)間;

          (2)討論零點(diǎn)的個(gè)數(shù);

          (3)當(dāng)時(shí),設(shè)恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案