日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列中,,且點在直線上;

          1)若數(shù)列滿足:,是數(shù)列的前項和,求.

          2)是否存在同時滿足以下兩個條件的三角形?如果存在,求出相應的三角形的三邊以及的值,如果不存在,說明理由.

          條件1:三邊長是數(shù)列中的連續(xù)三項,其中

          條件2:最小角是最大角的一半.

          【答案】12)存在,三邊長分別為:,;

          【解析】

          1)將點坐標代入直線方程,可知數(shù)列為等差數(shù)列,即可求得數(shù)列的通項公式.將數(shù)列的通項公式代入即可求得數(shù)列的通項公式,即可由裂項求和法求得數(shù)列的前項和.

          2)根據(jù)題意,假設存在這樣的三角形.設出三角形的三條邊,利用換元法令,用表示出三條邊.由結(jié)合正弦定理與余弦定理,即可解得的值,進而求得的值.再反代回原式檢驗即可.

          1)由條件可知,是公差為,首項為的等差數(shù)列,

          ,

          ,

          所以

          ,

          化簡得.

          2)假設滿足條件的三角形存在,設其三邊長分別為,,,

          ,

          則三邊長分別為,,,又記這三邊對應的三個角分別為,,,

          則由題有,則在,由正弦定理可知:,

          ,

          又在,由余弦定理知,

          整理可得,解得,

          ,,,的取值分別為,,

          三角形的三邊長分別為:,,.

          經(jīng)檢驗,三邊長分別為,,的三角形滿足題中條件,故滿足條件的三角形存在,

          其中,,的取值分別為,,

          三角形的三邊長分別為,,.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】等差數(shù)列的公差不為0,是其前項和,給出下列命題:

          ①若,且,則都是中的最大項;

          ②給定,對一切,都有;

          ③若,則中一定有最小項;

          ④存在,使得同號.

          其中正確命題的個數(shù)為(

          A.4B.3C.2D.1

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下列各組函數(shù)中表示同一個函數(shù)的是()

          A.fx)=x1,gx)= 1

          B.fx)=x2,gx)=( 4

          C.fx)=gx)=|x|

          D.fx)=,gx)=

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,已知圓,直線經(jīng)過點.若對任意的實數(shù),直線被圓截得的弦長為定值,則直線的方程為(

          A.B.C.D.這樣的直線不存在

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知定義域為的函數(shù)滿足,當時,,設上的最大值為,且的前n項和為,若對任意的正整數(shù)n均成立,則實數(shù)的取值范圍為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)().

          (1)判斷函數(shù)的奇偶性并說明理由;

          (2)是否存在實數(shù),使得當的定義域為,值域為?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】

          分別求出適合下列條件的直線方程:

          (1)經(jīng)過點且在軸上的截距等于在軸上截距的2倍;

          (2)經(jīng)過直線的交點,且和,等距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知定義域為的函數(shù)是奇函數(shù).

          1)求a,b的值;

          2)判斷函數(shù)的單調(diào)性,并用定義證明;

          3)當時,恒成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為了解某校高三學生的視力情況,隨機地抽查了該校200名高三學生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分數(shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設最多一組學生數(shù)為a,視力在4.65.0之間的頻率為b,則a,b的值分別為( )

          A.0.27,78B.54,0.78C.270.78D.54,78

          查看答案和解析>>

          同步練習冊答案