【題目】在平面直角坐標(biāo)系中,已知圓
,直線
經(jīng)過點(diǎn)
.若對(duì)任意的實(shí)數(shù)
,直線
被圓
截得的弦長(zhǎng)為定值,則直線
的方程為( )
A.B.
C.
D.這樣的直線不存在
【答案】C
【解析】
根據(jù)圓的方程求出圓心和半徑,由題意可得圓心到直線
的距離為定值.當(dāng)直線
的斜率不存在時(shí),經(jīng)過檢驗(yàn)不符合條件.當(dāng)直線
的斜率存在時(shí),直線
的方程為
,圓心
到直線
的距離為定值求得
的值,從而求得直線
的方程.
圓,
即,表示以
為圓心,半徑等于3的圓.
直線
經(jīng)過點(diǎn)
,對(duì)任意的實(shí)數(shù)
,定直線
被圓
截得的弦長(zhǎng)為定值,則圓心
到直線
的距離為定值.
當(dāng)直線的斜率不存在時(shí),直線
的方程為
,圓心
到直線
的距離為
,不是定值.
當(dāng)直線的斜率存在時(shí),設(shè)直線
的斜率為
,則直線
的方程為
,即
.
此時(shí),圓心到直線
的距離
為定值,與
無(wú)關(guān),故
,故直線
的方程為
,即
.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)E、F、G分別是正方體ABCD-A1B1C1D1的棱AB、BC、B1C1的中點(diǎn),如圖所示,則下列命題中的真命題是________(寫出所有真命題的編號(hào)).
①以正方體的頂點(diǎn)為頂點(diǎn)的三棱錐的四個(gè)面中最多只有三個(gè)面是直角三角形;
②過點(diǎn)F、D1、G的截面是正方形;
③點(diǎn)P在直線FG上運(yùn)動(dòng)時(shí),總有AP⊥DE;
④點(diǎn)Q在直線BC1上運(yùn)動(dòng)時(shí),三棱錐A-D1QC的體積是定值;
⑤點(diǎn)M是正方體的平面A1B1C1D1內(nèi)的到點(diǎn)D和C1距離相等的點(diǎn),則點(diǎn)M的軌跡是一條線段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定直線
的距離比到定點(diǎn)
的距離大
.
(1)求動(dòng)點(diǎn)的軌跡
的方程;
(2)過點(diǎn)的直線交軌跡
于
,
兩點(diǎn),直線
,
分別交直線
于點(diǎn)
,
,證明以
為直徑的圓被
軸截得的弦長(zhǎng)為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)記函數(shù)的圖象為曲線
.設(shè)點(diǎn)
,
是曲線
上的不同兩點(diǎn).如果在曲線
上存在點(diǎn)
,使得:①
;②曲線
在點(diǎn)
處的切線平行于直線
,則稱函數(shù)
存在“中值相依切線”.試問:函數(shù)
是否存在“中值相依切線”,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)記函數(shù)的圖象為曲線
.設(shè)點(diǎn)
,
是曲線
上的不同兩點(diǎn).如果在曲線
上存在點(diǎn)
,使得:①
;②曲線
在點(diǎn)
處的切線平行于直線
,則稱函數(shù)
存在“中值相依切線”.試問:函數(shù)
是否存在“中值相依切線”,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形所在平面與半圓弧
所在平面垂直,
是
上異于
,
的點(diǎn).
(1)證明:平面平面
;
(2)在線段上是否存在點(diǎn)
,使得
平面
?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中,
,且點(diǎn)
在直線
上;
(1)若數(shù)列滿足:
,
是數(shù)列
的前
項(xiàng)和,求
.
(2)是否存在同時(shí)滿足以下兩個(gè)條件的三角形?如果存在,求出相應(yīng)的三角形的三邊以及,
的值,如果不存在,說(shuō)明理由.
條件1:三邊長(zhǎng)是數(shù)列中的連續(xù)三項(xiàng),其中
;
條件2:最小角是最大角的一半.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
是邊長(zhǎng)為4的菱形,且
,
平面
,
分別為棱
的中點(diǎn).
(1)證明:平面
.
(2)若四棱錐的體積為
,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,某市為了制定合理的節(jié)水方案,對(duì)家庭用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100個(gè)家庭的月均用水量(單位:t),將數(shù)據(jù)按照,
,
,
,
分成5組,制成了如圖所示的頻率分布直方圖.
(1)記事件A:“全市家庭月均用水量不低于6t”,求的估計(jì)值;
(2)假設(shè)同組中的每個(gè)數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,求全市家庭月均用水量平均數(shù)的估計(jì)值(精確到0.01);
(3)求全市家庭月均用水量的25%分位數(shù)的估計(jì)值(精確到0.01).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com