【題目】為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校200名高三學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最多一組學(xué)生數(shù)為a,視力在4.6到5.0之間的頻率為b,則a,b的值分別為( )
A.0.27,78B.54,0.78C.27,0.78D.54,78
【答案】B
【解析】
先根據(jù)直方圖求出前2組的頻數(shù),根據(jù)前4組成等比數(shù)列求出第3和第4組的人數(shù),從而求出后6組的人數(shù),根據(jù)直方圖可知間的頻數(shù)最大,即可求出頻率
,根據(jù)等差數(shù)列的性質(zhì)可求出公差
,從而求出在4.6到5.0之間的學(xué)生數(shù)為
,從而求得頻率.
解:由頻率分布直方圖知組矩為0.1,間的頻數(shù)為
.
間的頻數(shù)為
.
又前4組的頻數(shù)成等比數(shù)列,公比為3.則第3組有18人,第4組有54人,
根據(jù)后6組頻數(shù)成等差數(shù)列,且共有人.
從而間的頻數(shù)最大,且為
,即
,
設(shè)公差為,則
.
,
則視力在4.6到5.0之間的學(xué)生數(shù)為
故視力在4.6到5.0之間的頻率.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,
,且點(diǎn)
在直線
上;
(1)若數(shù)列滿足:
,
是數(shù)列
的前
項(xiàng)和,求
.
(2)是否存在同時滿足以下兩個條件的三角形?如果存在,求出相應(yīng)的三角形的三邊以及,
的值,如果不存在,說明理由.
條件1:三邊長是數(shù)列中的連續(xù)三項(xiàng),其中
;
條件2:最小角是最大角的一半.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以為頂點(diǎn)的五面體中,
為
的中點(diǎn),
平面
,
∥
,
,
,
.
(1)試在線段找一點(diǎn)
使得
平面
,并證明你的結(jié)論;
(2)求證:平面
;
(3)求直線與平面
所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一,某市為了制定合理的節(jié)水方案,對家庭用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100個家庭的月均用水量(單位:t),將數(shù)據(jù)按照,
,
,
,
分成5組,制成了如圖所示的頻率分布直方圖.
(1)記事件A:“全市家庭月均用水量不低于6t”,求的估計(jì)值;
(2)假設(shè)同組中的每個數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,求全市家庭月均用水量平均數(shù)的估計(jì)值(精確到0.01);
(3)求全市家庭月均用水量的25%分位數(shù)的估計(jì)值(精確到0.01).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】日照一中為了落實(shí)“陽光運(yùn)動一小時”活動,計(jì)劃在一塊直角三角形ABC的空地上修建一個占地面積為S的矩形AMPN健身場地.如圖,點(diǎn)M在AC上,點(diǎn)N在AB上,且P點(diǎn)在斜邊BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].
(1)試用x表示S,并求S的取值范圍;
(2)若在矩形AMPN以外(陰影部分)鋪上草坪.已知:矩形AMPN健身場地每平方米的造價(jià)為,草坪的每平方米的造價(jià)為
(k為正常數(shù)).設(shè)總造價(jià)T關(guān)于S的函數(shù)為T=f(S),試問:如何選取|AM|的長,才能使總造價(jià)T最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓C經(jīng)過
,
,
(
)三點(diǎn),M是線段
上的動點(diǎn),
,
是過點(diǎn)
且互相垂直的兩條直線,其中
交y軸于點(diǎn)E,
交圓C于P、Q兩點(diǎn).
(1)若,求直線
的方程;
(2)若是使
恒成立的最小正整數(shù)
①求的值; ②求三角形
的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地空氣中出現(xiàn)污染,須噴灑一定量的去污劑進(jìn)行處理.據(jù)測算,每噴灑1個單位的去污劑,空氣中釋放的濃度(單位:毫克/立方米)隨著時間
(單位:天)變化的函數(shù)關(guān)系式近似為
,若多次噴灑,則某一時刻空氣中的去污劑濃度為每次投放的去污劑在相應(yīng)時刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中去污劑的濃度不低于4(毫克/立方米)時,它才能起到去污作用.
(1)若一次噴灑1個單位的去污劑,則去污時間可達(dá)幾天?
(2)若第一次噴灑1個單位的去污劑,6天后再噴灑個單位的去污劑,要使接下來的4天中能夠持續(xù)有效去污,試求
的最小值?(精確到
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在點(diǎn)
處的切線方程;
(2)若存在,對任意
,使得
恒成立,求實(shí)數(shù)
的取值范圍;
(3)已知函數(shù)區(qū)間
上的最小值為1,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銷售某種活蝦,根據(jù)以往的銷售情況,按日需量x(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500] 進(jìn)行分組,得到如圖所示的頻率分布直方圖.這種活蝦經(jīng)銷商進(jìn)價(jià)成本為每公斤15元,當(dāng)天進(jìn)貨當(dāng)天以每公斤20元進(jìn)行銷售,當(dāng)天未售出的須全部以每公斤10元賣給冷凍庫.某水產(chǎn)品經(jīng)銷商某天購進(jìn)了300公斤這種活蝦,設(shè)當(dāng)天利潤為Y元.
(1)求Y關(guān)于x的函數(shù)關(guān)系式;
(2)結(jié)合直方圖估計(jì)利潤Y不小于300元的概率;
(3)在直方圖的日需量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個值,日需量落入該區(qū)間的頻率作為日需量取該區(qū)間中點(diǎn)值的概率,求Y的平均估計(jì)值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com