【題目】已知定義域?yàn)?/span>的函數(shù)滿足
,當(dāng)
時(shí),
,設(shè)
在
上的最大值為
,且
的前n項(xiàng)和為
,若
對(duì)任意的正整數(shù)n均成立,則實(shí)數(shù)
的取值范圍為( )
A. B.
C.
D.
【答案】B
【解析】
運(yùn)用二次函數(shù)的最值和指數(shù)函數(shù)的單調(diào)性求得x∈[0,2)時(shí)f(x)的最大值,由遞推式可得{an}是首項(xiàng)為,公比為
的等比數(shù)列,由等比數(shù)列的求和公式和不等式恒成立思想可得k的范圍.
當(dāng)x∈[0,2)時(shí),,
所以函數(shù)f(x)在[0,)上單調(diào)遞增,在(
,1)上單調(diào)遞減,在
上單調(diào)遞增,在
上單調(diào)遞減,可得當(dāng)0≤x<1時(shí),f(x)的最大值為f(
)=
;
1≤x<2時(shí),f(x)的最大值為f()=1,
即有0≤x<2時(shí),f(x)的最大值為,即首項(xiàng)
,
由可得
可得{an}是首項(xiàng)為,公比為
的等比數(shù)列,
可得Sn==
,
由Sn<k對(duì)任意的正整數(shù)n均成立,可得k≥.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)監(jiān)測(cè),在海濱某城市附近的海面有一臺(tái)風(fēng). 臺(tái)風(fēng)中心位于城市的東偏南
方向、距離城市
的海面
處,并以
的速度向西偏北
方向移動(dòng)(如圖示).如果臺(tái)風(fēng)侵襲范圍為圓形區(qū)域,半徑
,臺(tái)風(fēng)移動(dòng)的方向與速度不變,那么該城市受臺(tái)風(fēng)侵襲的時(shí)長(zhǎng)為_____ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018河南安陽(yáng)市高三一模】如下圖,在平面直角坐標(biāo)系中,直線
與直線
之間的陰影部分即為
,區(qū)域
中動(dòng)點(diǎn)
到
的距離之積為1.
(Ⅰ)求點(diǎn)的軌跡
的方程;
(Ⅱ)動(dòng)直線穿過(guò)區(qū)域
,分別交直線
于
兩點(diǎn),若直線
與軌跡
有且只有一個(gè)公共點(diǎn),求證:
的面積恒為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知奇函數(shù)f(x)=a(a為常數(shù)).
(1)求a的值;
(2)若函數(shù)g(x)=|(2x+1)f(x)|﹣k有2個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;
(3)若x∈[﹣2,﹣1]時(shí),不等式f(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲(chóng)的6組觀測(cè)數(shù)據(jù)如下表:
溫度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個(gè) | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計(jì)算得: ,
,
,
,
,線性回歸模型的殘差平方和
,e8.0605≈3167,其中xi, yi分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用線性回歸模型,求y關(guān)于x的回歸方程=
x+
(精確到0.1);
(Ⅱ)若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.
( i )試與(Ⅰ)中的回歸模型相比,用R2說(shuō)明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預(yù)測(cè)溫度為35C時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=
x+
的斜率和截距的最小二乘估計(jì)為
=
;相關(guān)指數(shù)R2=
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.直線
交曲線
于
,
兩點(diǎn).
(Ⅰ)寫(xiě)出直線的極坐標(biāo)方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為
,求點(diǎn)
到
,
兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下四個(gè)結(jié)論:
①函數(shù)是偶函數(shù);
②當(dāng)時(shí),函數(shù)
的值域是
;
③若扇形的周長(zhǎng)為,圓心角為
,則該扇形的弧長(zhǎng)為6 cm;
④已知定義域?yàn)?/span>的函數(shù)
,當(dāng)且僅當(dāng)
時(shí),
成立.
則上述結(jié)論中正確的是______(寫(xiě)出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】寶寶的健康成長(zhǎng)是媽媽們最關(guān)心的問(wèn)題,父母親為嬰兒選擇什么品牌的奶粉一直以來(lái)都是育嬰中的一個(gè)重要話題,為了解過(guò)程奶粉的知名度和消費(fèi)者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個(gè)品牌奶粉的銷量(單位:罐),繪制如下的管狀圖:
(1)根據(jù)給出的這兩年銷量的管狀圖,對(duì)該超市這兩年品牌奶粉銷量的前五強(qiáng)進(jìn)行排名;
(2)分別計(jì)算這5個(gè)品牌奶粉2016年所占總銷量(僅指這5個(gè)品牌奶粉的總銷量)的百分比(百分?jǐn)?shù)精確到各位),并將數(shù)據(jù)填入如下餅狀圖中的括號(hào)內(nèi);
(3)已知該超市2014年飛鶴奶粉的銷量為(單位:罐),試以
這3年的銷量得出銷量
關(guān)于
年份的線性回歸方程,并據(jù)此預(yù)測(cè)2017年該超市飛鶴奶粉的銷量.
相關(guān)公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(cosx,﹣
),
=(
sinx,cos2x),x∈R,設(shè)函數(shù)f(x)=
.
(1)求f(x)的最小正周期.
(2)求f(x)在[0, ]上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com