日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
          (1)證明:平面ACF⊥平面BEFD
          (2)若二面角A﹣EF﹣C是二面角,求直線AE與平面ABCD所成角的正切值.

          【答案】
          (1)證明:∵四邊形ABCD是菱形,∴AC⊥BD,

          ∵BE⊥平面ABCD,∴BE⊥AC,

          ∴AC⊥平面BEFD,

          ∵AC平面ACF,∴平面ACF⊥平面BEFD


          (2)解:設(shè)AC與BD的交點(diǎn)為O,由(1)得AC⊥BD,

          分別以O(shè)A,OB為x軸,y軸,建立空間直角坐標(biāo)系,

          ∵BE⊥平面ABCD,∴BE⊥BD,

          ∵DF∥BE,∴DF⊥BD,

          ∴BD2=EF2﹣(DF﹣BE)2=8,∴BD=2

          設(shè)OA=a,(a>0),

          由題設(shè)得A(a,0,0),C(﹣a,0,0),E(0, ),F(xiàn)(0,﹣ ,2),

          設(shè)m=(x,y,z)是平面AEF的法向量,

          ,取z=2 ,得 =( ),

          設(shè) 是平面CEF的一個(gè)法向量,

          ,取 ,得 =(﹣ ,1,2 ),

          ∵二面角A﹣EF﹣C是直二面角,

          =﹣ +9=0,解得a= ,

          ∵BE⊥平面ABCD,

          ∴∠BAE是直線AE與平面ABCD所成的角,

          ∴AB= =2,∴tan

          ∴直線AE與平面ABCD所成角的正切值為


          【解析】(1)推導(dǎo)出AC⊥BD,BE⊥AC,從而AC⊥平面BEFD,由此能證明平面ACF⊥平面BEFD.(2)設(shè)AC與BD的交點(diǎn)為O,分別以O(shè)A,OB為x軸,y軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AE與平面ABCD所成角的正切值.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面與平面垂直的判定的相關(guān)知識(shí),掌握一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=cos2x,二次函數(shù)g(x)滿足g(0)=4,且對任意的x∈R,不等式﹣3x2﹣2x+3≤g(x)≤4x+6成立,則函數(shù)f(x)+g(x)的最大值為(
          A.5
          B.6
          C.4
          D.7

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】點(diǎn)P在雙曲線 (a>0,b>0)的右支上,其左、右焦點(diǎn)分別為F1、F2 , 直線PF1與以坐標(biāo)原點(diǎn)O為圓心、a為半徑的圓相切于點(diǎn)A,線段PF1的垂直平分線恰好過點(diǎn)F2 , 則該雙曲線的漸近線的斜率為(
          A.±
          B.±
          C.±
          D.±

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知D= ,給出下列四個(gè)命題:
          P1(x,y)∈D,x+y+1≥0;
          P2(x,y)∈D,2x﹣y+2≤0;
          P3(x,y)∈D, ≤﹣4;
          P4(x,y)∈D,x2+y2≤2.
          其中真命題的是( )
          A.P1 , P2
          B.P2 , P3
          C.P2 , P4
          D.P3 , P4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}中, ,則其前n項(xiàng)和Sn=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C所對的邊,a=2bcosB,b≠c.
          (1)證明:A=2B;
          (2)若a2+c2=b2+2acsinC,求A.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,長方形的邊AB=2,BC=1,O是AB的中點(diǎn),點(diǎn)P沿著邊BC,CD與DA運(yùn)動(dòng),記BOP=x,將動(dòng)點(diǎn)P到A,B兩點(diǎn)距離之和表示為x的函數(shù)f(x),則圖像大致為()

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖O是等腰三角形ABC內(nèi)一點(diǎn),圓O與△ABC的底邊BC交于M,N兩點(diǎn),與底邊上的高交于點(diǎn)G,且與AB,AC分別相切于E,F兩點(diǎn).

          (1)(I)證明EF//BC
          (2)(II)若AG等于圓O半徑,且AE=MN=2,求四邊形EBCF的面積

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(2015·四川)已知函數(shù)f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
          (1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;
          (2)證明:存在a(0,1),使得f(x)≥0,在區(qū)間(1,+)內(nèi)恒成立,且f(x)=0在(1,+)內(nèi)有唯一解.

          查看答案和解析>>

          同步練習(xí)冊答案