日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,a,b,c分別為A,B,C所對(duì)邊,a+b=4,(2﹣cosA)tan =sinA.
          (1)求邊長(zhǎng)c的值;
          (2)若E為AB的中點(diǎn),求線段EC的范圍.

          【答案】
          (1)解:在△ABC中,∵(2﹣cosA)tan =sinA,a+b=4,

          ∴(2﹣cosA) =sinA,

          即2sinC=sinA+sinAcosC+cosAsinC=sinA+sinB,

          ∴由正弦定理可得:2c=a+b=4,

          ∴c=2.


          (2)∵c=2,E為AB的中點(diǎn),

          ∴由余弦定理可得:CE2=AE2+AC2﹣2AEACcosA=a2+1﹣2acosB,

          CE2=BE2+BC2﹣2BEBCcosB=b2+1﹣2bcosA,

          ∴兩式相加可得:CE2= ,

          又∵cosB= ,cosA= ,a=4﹣b,

          又∵ ,

          ∴1<b<3,


          【解析】(1)由已知利用半角公式化簡(jiǎn)條件式子,再根據(jù)正弦定理結(jié)合已知即可解得c的值。(2)利用已知以及余弦定理可得出 ,再結(jié)合可得出b的取值范圍,利用二次函數(shù)的性質(zhì)即可解出 C E的范圍。
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握正弦定理:;余弦定理:;;

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
          (1)若花店一天購(gòu)進(jìn)16枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
          (2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:

          日需求量n

          14

          15

          16

          17

          18

          19

          20

          頻數(shù)

          10

          20

          16

          16

          15

          13

          10

          以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
          (i)若花店一天購(gòu)進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(rùn)(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
          (ii)若花店計(jì)劃一天購(gòu)進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購(gòu)進(jìn)16枝還是17枝?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知 =
          (1)求 的值
          (2)若cosB= ,b=2,求△ABC的面積S.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】閱讀如圖所示的程序框圖,則該算法的功能是(

          A.計(jì)算數(shù)列{2n1}前5項(xiàng)的和
          B.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
          C.計(jì)算數(shù)列{2n1}前6項(xiàng)的和
          D.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,則“∠C>90°”的一個(gè)充分非必要條件是( 。
          A.sin2A+sin2B<sin2C
          B.sinA= ,(A為銳角),cosB=
          C.c2>2(a+b﹣1)
          D.sinA<cosB

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出的S=( 。

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】隨著霧霾日益嚴(yán)重,很多地區(qū)都實(shí)行了“限行”政策,現(xiàn)從某地區(qū)居民中,隨機(jī)抽取了300名居民了解他們對(duì)這一政策的態(tài)度,繪成如圖所示的2×2列聯(lián)表:

          反對(duì)

          支持

          合計(jì)

          男性

          70

          60

          女性

          50

          120

          合計(jì)


          (1)試問(wèn)有沒(méi)有99%的把握認(rèn)為對(duì)“限行”政策的態(tài)度與性別有關(guān)?
          (2)用樣本估計(jì)總體,把頻率作為概率,若從該地區(qū)所有的居民(人數(shù)很多)中隨機(jī)抽取3人,用ξ表示所選3人中反對(duì)的人數(shù),試寫出ξ的分布列,并求出ξ的數(shù)學(xué)期望.
          K2= ,其中n=a+b+c+d獨(dú)立性檢驗(yàn)臨界表:

          P(K2≥k)

          0.100

          0.050

          0.010

          0.001

          k

          2.706

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知Ω={(x,y)||x|≤1,|y|≤1},A是曲線y=x3 圍成的區(qū)域,若向區(qū)域Ω上隨機(jī)投一點(diǎn)P,則點(diǎn)P落入?yún)^(qū)域A的概率為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E在線段PC上,PC⊥平面BDE,設(shè)PA=1,AD=2.

          (1)求平面BPC的法向量;
          (2)求二面角B﹣PC﹣A的正切值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案