日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的離心率為的四個(gè)頂點(diǎn)圍成的四邊形面積為

          1)求的方程;

          2)過的右焦點(diǎn),且斜率不為0的直線交于兩點(diǎn),線段的垂直平分線經(jīng)過點(diǎn),求的面積.

          【答案】1;(2

          【解析】

          1)根據(jù),得到,再由的四個(gè)頂點(diǎn)圍成的四邊形面積為,即,兩式聯(lián)立求解.

          2)由消去,得*),利用韋達(dá)定理,得到線段的垂直平分線,將點(diǎn)代入解得,再利用弦長(zhǎng)公式求得,然后求得點(diǎn)到直線AB的距離,代入三角形面積公式求解.

          1)由題意知,

          所以,即,

          又因?yàn)?/span>的四個(gè)頂點(diǎn)圍成的四邊形面積為

          所以,

          解得

          所以的方程為

          2)由(1)得,

          設(shè)直線的斜率為

          的中點(diǎn)為,

          消去,得*),

          恒成立,,

          所以,

          所以線段的垂直平分線為,

          將點(diǎn)代入得,解得,

          所以把代入(*),得,

          所以

          點(diǎn)到直線的距離,

          所以

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在去年的足球甲聯(lián)賽上,一隊(duì)每場(chǎng)比賽平均失球數(shù)是1.5,全年比賽失球個(gè)數(shù)的標(biāo)準(zhǔn)差為1.1;二隊(duì)每場(chǎng)比賽平均失球數(shù)是2.1,全年失球個(gè)數(shù)的標(biāo)準(zhǔn)差是0.4,你認(rèn)為下列說法中正確的個(gè)數(shù)有( )

          ①平均來說一隊(duì)比二隊(duì)防守技術(shù)好;②二隊(duì)比一隊(duì)防守技術(shù)水平更穩(wěn)定;③一隊(duì)防守有時(shí)表現(xiàn)很差,有時(shí)表現(xiàn)又非常好;④二隊(duì)很少不失球.

          A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)圖象的相鄰兩條對(duì)稱軸之間的距離為.

          (1)討論函數(shù)f(x)在區(qū)間上的單調(diào)性;

          (2)將函數(shù)的圖象向左平移個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,得到函數(shù)的圖象.求上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)判斷函數(shù)的單調(diào)性;

          2)若對(duì)任意時(shí),都有,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓為坐標(biāo)原點(diǎn)),直線.

          1)過直線上任意一點(diǎn)作圓的兩條切線,切點(diǎn)分別為,求四邊形面積的最小值.

          2)過點(diǎn)的直線分別與圓交于點(diǎn)不與重合),若,試問直線是否過定點(diǎn)?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程是,曲線的極坐標(biāo)方程是

          1)求直線l和曲線的直角坐標(biāo)方程,曲線的普通方程;

          2)若直線l與曲線和曲線在第一象限的交點(diǎn)分別為P,Q,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正方體(如圖),則(

          A.直線CFGD所成的角與向量所成的角相等

          B.向量是平面ACH的法向量

          C.直線CE與平面ACH所成角的正弦值與的平方和等于1

          D.二面角的余弦值等于

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列命題中錯(cuò)誤的是( )

          A. 命題“若,則”的逆否命題是真命題

          B. 命題“”的否定是“

          C. 為真命題,則為真命題

          D. 已知,則“”是“”的必要不充分條件

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對(duì)100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

          喜歡游泳

          不喜歡游泳

          合計(jì)

          男生

          10

          女生

          20

          合計(jì)

          已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為

          (1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;

          (2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;

          (3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰好有1人喜歡游泳的概率.

          下面的臨界值表僅供參考:

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          (參考公式:,其中

          查看答案和解析>>

          同步練習(xí)冊(cè)答案