【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的值域;
(2)若不等式對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍;
(3)證明:.
【答案】(1);(2)
;(3)證明見解析.
【解析】
(1)先對(duì)函數(shù)求導(dǎo),判斷出函數(shù)單調(diào)性,進(jìn)而可得出值域;
(2)先由題意,將問題轉(zhuǎn)化為對(duì)任意
恒成立,構(gòu)造函數(shù)
,對(duì)函數(shù)
求導(dǎo),用導(dǎo)數(shù)方法判斷其單調(diào)性,求其最小值,即可得出結(jié)果.
(3)令,對(duì)函數(shù)
求導(dǎo),用導(dǎo)數(shù)方法研究其單調(diào)性,求其最小值,只需最小值大于0即可.
(1)因?yàn)?/span>,
所以,
∵,∴
,
∴,所以
,
故函數(shù)在
上單調(diào)遞減,函數(shù)
的最大值為
;
的最小值為
,
所以函數(shù)的值域?yàn)?/span>
.
(2)原不等式可化為 …(*),
因?yàn)?/span>恒成立,故(*)式可化為
.
令,則
,
當(dāng)時(shí),
,所以函數(shù)
在
上單調(diào)遞增,故
,所以
;
當(dāng)時(shí),令
,得
,
所以當(dāng)時(shí),
;當(dāng)
時(shí),
.
所以當(dāng),即
時(shí),函數(shù)
成立;
當(dāng),即
時(shí),函數(shù)
在
上單調(diào)遞減,
,解得
綜上,.
(3)令,則
.
由,故存在
,使得
,
即 .
所以,當(dāng)時(shí),
;當(dāng)
時(shí),
.
故當(dāng)時(shí),函數(shù)
有極小值,且是唯一的極小值,
故函數(shù)
,
因?yàn)?/span>,所以
,
故,
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲所示的平面五邊形中,
,
,
,
,
,現(xiàn)將圖甲所示中的
沿
邊折起,使平面
平面
得如圖乙所示的四棱錐
.在如圖乙所示中
(1)求證:平面
;
(2)求二面角的大。
(3)在棱上是否存在點(diǎn)
使得
與平面
所成的角的正弦值為
?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(
)
.
(1)求曲線C和直線l的直角坐標(biāo)方程;
(2)若直線l交曲線C于A,B兩點(diǎn),交x軸于點(diǎn)P,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中;
已知三個(gè)論斷:(1)四棱柱是直四棱柱;(2)底面
是菱形;(3)
.
以其中兩個(gè)論斷作條件,余下一個(gè)為結(jié)論,可以得到三個(gè)命題,其中有幾個(gè)是真命題?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】攜號(hào)轉(zhuǎn)網(wǎng),也稱作號(hào)碼攜帶、移機(jī)不改號(hào),即無需改變自己的手機(jī)號(hào)碼,就能轉(zhuǎn)換運(yùn)營(yíng)商,并享受其提供的各種服務(wù).2019年11月27日,工信部宣布攜號(hào)轉(zhuǎn)網(wǎng)在全國(guó)范圍正式啟動(dòng).某運(yùn)營(yíng)商為提質(zhì)量保客戶,從運(yùn)營(yíng)系統(tǒng)中選出300名客戶,對(duì)業(yè)務(wù)水平和服務(wù)水平的評(píng)價(jià)進(jìn)行統(tǒng)計(jì),其中業(yè)務(wù)水平的滿意率為,服務(wù)水平的滿意率為
,對(duì)業(yè)務(wù)水平和服務(wù)水平都滿意的客戶有180人.
(Ⅰ)完成下面列聯(lián)表,并分析是否有
的把握認(rèn)為業(yè)務(wù)水平與服務(wù)水平有關(guān);
對(duì)服務(wù)水平滿意人數(shù) | 對(duì)服務(wù)水平不滿意人數(shù) | 合計(jì) | |
對(duì)業(yè)務(wù)水平滿意人數(shù) | |||
對(duì)業(yè)務(wù)水平不滿意人數(shù) | |||
合計(jì) |
(Ⅱ)為進(jìn)一步提高服務(wù)質(zhì)量,在選出的對(duì)服務(wù)水平不滿意的客戶中,抽取2名征求改進(jìn)意見,用表示對(duì)業(yè)務(wù)水平不滿意的人數(shù),求
的分布列與期望;
(Ⅲ)若用頻率代替概率,假定在業(yè)務(wù)服務(wù)協(xié)議終止時(shí),對(duì)業(yè)務(wù)水平和服務(wù)水平兩項(xiàng)都滿意的客戶流失率為,只對(duì)其中一項(xiàng)不滿意的客戶流失率為
,對(duì)兩項(xiàng)都不滿意的客戶流失率為
,從該運(yùn)營(yíng)系統(tǒng)中任選4名客戶,則在業(yè)務(wù)服務(wù)協(xié)議終止時(shí)至少有2名客戶流失的概率為多少?
附:,
.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高一、高二、高三年級(jí)的學(xué)生人數(shù)之比依次為6:5:7,防疫站欲對(duì)該校學(xué)生進(jìn)行身體健康調(diào)查,用分層抽樣的方法從該校高中三個(gè)年級(jí)的學(xué)生中抽取容量為n的樣本,樣本中高三年級(jí)的學(xué)生有21人,則n等于( )
A.35B.45C.54D.63
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在貫徹精準(zhǔn)扶貧政策的過程中,某單位在某市定點(diǎn)幫扶甲、乙兩村各戶貧困戶,工作組對(duì)這
戶村民的年收入、勞動(dòng)能力、子女受教育等情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)換為貧困指標(biāo)
,再將指標(biāo)
分成
、
、
、
、
五組,得到如下圖所示的頻率分布直方圖.若規(guī)定
,則認(rèn)定該戶為“絕對(duì)貧困戶”,否則認(rèn)定該戶為“相對(duì)貧困戶”,且當(dāng)
時(shí),認(rèn)定該戶為“低收入戶”,當(dāng)
時(shí),認(rèn)定該戶為“亟待幫助戶”.已知此次調(diào)查中甲村的“絕對(duì)貧困戶”占甲村貧困戶的
.
(1)完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為“絕對(duì)貧困戶”數(shù)與村落有關(guān);
(2)某干部決定在這兩村貧困指標(biāo)在、
內(nèi)的貧困戶中,利用分層抽樣抽取
戶,現(xiàn)從這
戶中再隨機(jī)選取
戶進(jìn)行幫扶,求所選
戶中至少有一戶是“亟待幫助戶”的概率.
甲村 | 乙村 | 總計(jì) | |
絕對(duì)貧困戶 | |||
相對(duì)貧困戶 | |||
總計(jì) |
附:,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,直線
不過原點(diǎn)
且不平行于坐標(biāo)軸,
與
有兩個(gè)交點(diǎn)
,
,線段
的中點(diǎn)為
.
(1)若,點(diǎn)
在橢圓
上,
、
分別為橢圓的兩個(gè)焦點(diǎn),求
的范圍;
(2)若過點(diǎn)
,射線
與橢圓
交于點(diǎn)
,四邊形
能否為平行四邊形?若能,求此時(shí)直線
斜率;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱中,側(cè)棱與底面垂直,且
,
,
、
分別是
、
的中點(diǎn),點(diǎn)
在線段
上,且
.
(1)求證:不論取何值,總有
;
(2)當(dāng)時(shí),求平面
與平面
所成二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com