【題目】如圖,已知三棱柱中,側(cè)棱與底面垂直,且
,
,
、
分別是
、
的中點,點
在線段
上,且
.
(1)求證:不論取何值,總有
;
(2)當(dāng)時,求平面
與平面
所成二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)以點為坐標(biāo)原點,以
、
、
所在直線分別為
、
、
軸,建立空間直角坐標(biāo)系
,求出向量
和
的坐標(biāo),通過
可證明出
;
(2)分別求出平面的一個法向量和平面
的法向量,由此利用向量法能求出平面
與平面
所成銳二面角的余弦值.
以點為坐標(biāo)原點,以
、
、
所在直線分別為
、
、
軸,建立如下圖所示的空間直角坐標(biāo)系
,則
,
,
,
.
(1),
,
,
.
,
,
因此,無論取何值,
;
(2)當(dāng)時,
,
,
,
而平面的法向量
,設(shè)平面
的法向量為
,
則,解得
,則
,
設(shè)為平面
與平面
所成的銳二面角,則
.
因此,平面與平面
所成二面角的余弦值是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為自然對數(shù)的底數(shù)).
(1)求函數(shù)的值域;
(2)若不等式對任意
恒成立,求實數(shù)
的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.
其中每一級過濾都由核心部件濾芯來實現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立).若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個一級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個二級過濾器更換的濾芯個數(shù)制成的條形圖.
表1:一級濾芯更換頻數(shù)分布表
一級濾芯更換的個數(shù) | 8 | 9 |
頻數(shù) | 60 | 40 |
圖2:二級濾芯更換頻數(shù)條形圖
以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.
(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16的概率;
(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級濾芯總數(shù),求
的分布列及數(shù)學(xué)期望;
(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).若
,且
,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費用的期望值為決策依據(jù),試確定
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角梯形ABCD中,,
,
,將直角梯形ABCD(及其內(nèi)部)以AB所在直線為軸順時針旋轉(zhuǎn)90°,形成如圖所示的幾何體,其中M為
的中點.
(1)求證:;
(2)求異面直線BM與EF所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,
,
.已知
分別是
的中點.將
沿
折起,使
到
的位置且二面角
的大小是60°,連接
,如圖:
(1)證明:平面平面
(2)求平面與平面
所成二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】焦點在x軸上的橢圓C:經(jīng)過點
,橢圓C的離心率為
.
,
是橢圓的左、右焦點,P為橢圓上任意點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點M為的中點(O為坐標(biāo)原點),過M且平行于OP的直線l交橢圓C于A,B兩點,是否存在實數(shù)
,使得
;若存在,請求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知圓,圓
.
(1)證明:圓與圓
有公共點,并求公共點的軌跡
的方程;
(2)已知點,過點
且斜率為
的直線與(1)中軌跡
相交于
兩點,記直線
的斜率為
,直線
的斜率為
,是否存在實數(shù)
使得
為定值?若存在,求出
的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三個幾何體組合的正視圖和側(cè)視圖均為如下圖所示,則下列圖中能作為俯視圖的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上的點到點
的距離比到直線
的距離小
,
為坐標(biāo)原點.
(1)過點且傾斜角為
的直線與曲線
交于
、
兩點,求
的面積;
(2)設(shè)為曲線
上任意一點,點
,是否存在垂直于
軸的直線
,使得
被以
為直徑的圓截得的弦長恒為定值?若存在,求出
的方程和定值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com