【題目】某工廠經(jīng)過(guò)市場(chǎng)調(diào)查,甲產(chǎn)品的日銷售量(單位:噸)與銷售價(jià)格
(單位:萬(wàn)元/噸)滿足關(guān)系式
(其中
為常數(shù)),已知銷售價(jià)格為
萬(wàn)元/噸時(shí),每天可售出該產(chǎn)品
噸.
(1)求的值;
(2)若該產(chǎn)品的成本價(jià)格為萬(wàn)元/噸,當(dāng)銷售價(jià)格為多少時(shí),該產(chǎn)品每天的利潤(rùn)最大?并求出最大值.
【答案】(1);(2)該產(chǎn)品每天的利潤(rùn)最大且為
萬(wàn)元.
【解析】
試題分析:(1)由可得
,解得
;(2)商品所獲得的利潤(rùn)為
分別利用導(dǎo)數(shù)研究?jī)啥魏瘮?shù)的單調(diào)性并求出其最大值,進(jìn)行比較后可得銷售價(jià)格為
萬(wàn)元/噸時(shí),該產(chǎn)品每天的利潤(rùn)最大且為
萬(wàn)元 .
試題解析:(1)由題意可得,
由(其中
為常數(shù)),可得
,解得
.
(2)由(1)可得
設(shè)商品所獲得的利潤(rùn)為
當(dāng)時(shí),
,當(dāng)且僅當(dāng)
時(shí),取得最大值
;
當(dāng)時(shí),
,
當(dāng)時(shí),取得最大值
.
綜上可得時(shí),取得最大值
,即當(dāng)銷售價(jià)格為
萬(wàn)元/噸時(shí),該產(chǎn)品每天的利潤(rùn)最大且為
萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列算法語(yǔ)句,將輸出的A值依次記為a1,a2,…,an,…,a2015;已知函數(shù)f(x)=a2sin(ωx+φ)(ω>0,|φ|<)的最小正周期是a1,且函數(shù)
的圖象關(guān)于直線x=
對(duì)稱。
(Ⅰ)求函數(shù)表達(dá)式;
(Ⅱ)已知△ABC中三邊a,b,c對(duì)應(yīng)角A,B,C,a=4,b=4,∠A=30°,求
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十一國(guó)慶節(jié)期間,某商場(chǎng)舉行購(gòu)物抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為,中獎(jiǎng)可以獲得3分;方案乙的中獎(jiǎng)率為
,中獎(jiǎng)可以獲得2分;未中獎(jiǎng)則不得分,每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,抽獎(jiǎng)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.
(1)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為,求
的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),分別求兩種方案下小明、小紅累計(jì)得分的分布列,并指出為了累計(jì)得分較大,兩種方案下他們選擇何種方案較好,并給出理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在
上是減函數(shù),求實(shí)數(shù)
的取值范圍;
(2)令,是否存在實(shí)數(shù)
,當(dāng)
(
是自然常數(shù))時(shí),函數(shù)
的最小值是3,若存在,求出
的值;若不存在,說(shuō)明理由.
(3)當(dāng)時(shí),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,向量
,
,且
與
共線.
(1)求數(shù)列的通項(xiàng)公式;
(2)對(duì)任意,將數(shù)列
中落入?yún)^(qū)間
內(nèi)的項(xiàng)的個(gè)數(shù)記為
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在直三棱柱中,
,
,
,
,點(diǎn)
是
的中點(diǎn).
(1)求證: 平面
;
(2)求異面直線與
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知曲線,將曲線
上的點(diǎn)向左平移一個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)軸伸長(zhǎng)到原來(lái)的2倍,得到曲線
,又已知直線
(
是參數(shù)),且直線
與曲線
交于
兩點(diǎn).
(I)求曲線的直角坐標(biāo)方程,并說(shuō)明它是什么曲線;
(II)設(shè)定點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
過(guò)點(diǎn)
,離心率為
,
分別為左右焦點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若上存在兩個(gè)點(diǎn)
,橢圓上有兩個(gè)點(diǎn)
滿足
三點(diǎn)共線,
三點(diǎn)共線,且
,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形中,
,
分別在
上,且
,沿
將四邊形
折成四邊形
,使點(diǎn)
在平面
上的射影
在直線
上,且
.
(1)求證:平面
;
(2)求到平面
的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com