【題目】已知橢圓的離心率為
,其左、右焦點(diǎn)分別為
,左、右頂點(diǎn)分別為
,上、下頂點(diǎn)分別為
,四邊形
與四邊形
的面積之和為4.
(1)求橢圓的方程;
(2)直線與橢圓
交于
兩點(diǎn),
(其中
為坐標(biāo)原點(diǎn)),求直線
被以線段
為直徑的圓截得的弦長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(其中e為自然對(duì)數(shù)的底數(shù)),g(x)= x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1﹣,求T(x)在[0,1]上的最大值;
(2)若m=﹣,n∈N*,求使f(x)的圖象恒在g(x)圖象上方的最大正整數(shù)n.[注意:7<e2<
].
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1 , 設(shè)AB1的中點(diǎn)為D,B1C∩BC1=E.
求證:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的方程為,過(guò)點(diǎn)
的一條直線與拋物線
交于
兩點(diǎn),若拋物線在
兩點(diǎn)的切線交于點(diǎn)
.
(1)求點(diǎn)的軌跡方程;
(2)設(shè)直線與直線
的夾角為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,若a1=1,anan+1=( )n﹣2 , 則滿足不等式
+
+
+…+
+
<2016的正整數(shù)n的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷(xiāo)售額y(單位:萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回歸直線方程;
(2)試預(yù)測(cè)廣告費(fèi)支出為10萬(wàn)元時(shí),銷(xiāo)售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值不超過(guò)5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017重慶二診】已知橢圓:
的左頂點(diǎn)為
,右焦點(diǎn)為
,過(guò)點(diǎn)
且斜率為1的直線交橢圓
于另一點(diǎn)
,交
軸于點(diǎn)
,
.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作直線
與橢圓
交于
兩點(diǎn),連接
(
為坐標(biāo)原點(diǎn))并延長(zhǎng)交橢圓
于點(diǎn)
,求
面積的最大值及取最大值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為備戰(zhàn)年瑞典乒乓球世界錦標(biāo)賽,乒乓球隊(duì)舉行公開(kāi)選撥賽,甲、乙、丙三名選手入圍最終單打比賽名單.現(xiàn)甲、乙、丙三人進(jìn)行隊(duì)內(nèi)單打?qū)贡荣,每(jī)扇吮荣愐粓?chǎng),共賽三場(chǎng),每場(chǎng)比賽勝者得
分,負(fù)者得
分,在每一場(chǎng)比賽中,甲勝乙的概率為
,丙勝甲的概率為
,乙勝丙的概率為
,且各場(chǎng)比賽結(jié)果互不影響.若甲獲第一名且乙獲第三名的概率為
.
(Ⅰ)求的值;
(Ⅱ)設(shè)在該次對(duì)抗比賽中,丙得分為,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com