【題目】【2017重慶二診】已知橢圓:
的左頂點為
,右焦點為
,過點
且斜率為1的直線交橢圓
于另一點
,交
軸于點
,
.
(1)求橢圓的方程;
(2)過點作直線
與橢圓
交于
兩點,連接
(
為坐標原點)并延長交橢圓
于點
,求
面積的最大值及取最大值時直線
的方程.
【答案】(Ⅰ);(Ⅱ)
面積的最大值為3,此時直線
的方程為
【解析】(Ⅰ)由已知,易知求得點,
的坐標,由
,利用向量的坐標表示可求得點
坐標,聯(lián)立右焦點坐標及橢圓中
關(guān)系式,代入橢圓方程進行運算即可;(Ⅱ)由橢圓對稱性得,
,由題意,聯(lián)立直線與橢圓的方程,求得
的底邊長
,再由點到直線距離公式求得
的高,從而建立所求三角形面積的函數(shù),通過求面積函數(shù)的最大值,從而問題可得解.
試題解析:(Ⅰ)由題知,故
,代入橢圓
的方程得
,又
,
故,橢圓
;
(Ⅱ)由題知,直線不與
軸重合,故可設
,由
得
,
設,則
,由
與
關(guān)于原點對稱知,
,
,
,即
,當且僅當
時等號成立,
面積的最大值為3,此時直線
的方程為
科目:高中數(shù)學 來源: 題型:
【題目】某校舉行元旦匯演,七位評委為某班的小品打出的分數(shù)如莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為
,其左、右焦點分別為
,左、右頂點分別為
,上、下頂點分別為
,四邊形
與四邊形
的面積之和為4.
(1)求橢圓的方程;
(2)直線與橢圓
交于
兩點,
(其中
為坐標原點),求直線
被以線段
為直徑的圓截得的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是平行四邊形,
,側(cè)面
底面
,
,
,
分別為
的中點,點
在線段
上.
(Ⅰ)求證:平面
;
(Ⅱ)如果直線與平面
所成的角和直線
與平面
所成的角相等,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017福建三明5月質(zhì)檢】已知直線與拋物線
相切,且與
軸的交點為
,點
.若動點
與兩定點
所構(gòu)成三角形的周長為6.
(Ⅰ) 求動點的軌跡
的方程;
(Ⅱ) 設斜率為的直線
交曲線
于
兩點,當
,且
位于直線
的兩側(cè)時,證明:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市舉辦校園足球賽,組委會為了做好服務工作,招募了12名男志愿者和10名女志愿者,調(diào)查發(fā)現(xiàn)男女志愿者中分別有8人和4人喜歡看足球比賽,其余不喜歡
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜歡看足球比賽 | 不喜歡看足球比賽 | 總計 | |
男 | |||
女 | |||
總計 |
(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.10的前提下認為性別與喜歡看足球比賽有關(guān)?
(3)從女志愿者中抽取2人參加某場足球比賽服務工作,若其中喜歡看足球比賽的人數(shù)為ξ,求ξ的分布列和數(shù)學期望.
附:參考公式:K2= ,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k0) | 0.4 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017湖南長沙二模】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,并依據(jù)質(zhì)量指標值劃分等極如下表:
質(zhì)量指標值 | |||
等級 | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù) ,能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?
(2)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標值近似滿足
,則“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017河北唐山三模】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間
有唯一零點
,證明:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點E為AB的中點.
(1)求證:BD1∥平面A1DE;
(2)求直線A1E與平面AD1E所成角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com