【題目】函數(shù)是定義在
上的奇函數(shù),且
為偶函數(shù),當(dāng)
時(shí),
,若函數(shù)
恰有一個(gè)零點(diǎn),則實(shí)數(shù)
的取值范圍是
A. B.
C. D.
【答案】D
【解析】分析:根據(jù)條件判斷函數(shù)的周期性和對(duì)稱性,求出函數(shù)在一個(gè)周期內(nèi)的解析式,利用轉(zhuǎn)化法進(jìn)行求解即可.
詳解:∵f(x)是定義在R上的奇函數(shù),且f(x﹣1)為偶函數(shù),
∴f(﹣x﹣1)=f(x﹣1)=﹣f(x+1),
即f(x)=﹣f(x+2),
則f(x+4)=﹣f(x+2)=f(x),即函數(shù)f(x)的周期是4,
∵f(x﹣1)為偶函數(shù),∴f(x﹣1)關(guān)于x=0對(duì)稱,
則f(x)關(guān)于x=﹣1對(duì)稱,同時(shí)也關(guān)于x=1對(duì)稱,
若x∈[﹣1,0],則﹣x∈[0,1],
此時(shí)f(﹣x)==﹣f(x),則f(x)=﹣
,x∈[﹣1,0],
若x∈[﹣2,﹣1],x+2∈[0,1],
則f(x)=﹣f(x+2)=﹣,x∈[﹣2,﹣1],
若x∈[1,2],x﹣2∈[﹣1,0],
則f(x)=﹣f(x﹣2)==
,x∈[1,2],
作出函數(shù)f(x)的圖象如圖:
由數(shù)g(x)=f(x)﹣x﹣b=0得f(x)=x+b,
由圖象知當(dāng)x∈[﹣1,0]時(shí),由﹣=x+b,平方得x2+(2b+1)x+b2=0,
由判別式△=(2b+1)2﹣4b2=0得4b+1=0,得b=﹣,此時(shí)f(x)=x+b有兩個(gè)交點(diǎn),
當(dāng)x∈[4,5],x﹣4∈[0,1],則f(x)=f(x﹣4)=,
由=x+b,平方得x2+(2b﹣1)x+4+b2=0,
由判別式△=(2b﹣1)2﹣16﹣4b2=0得4b=﹣15,得b=﹣,此時(shí)f(x)=x+b有兩個(gè)交點(diǎn),
則要使此時(shí)f(x)=x+b有一個(gè)交點(diǎn),則在[0,4]內(nèi),b滿足﹣<b<﹣
,
即實(shí)數(shù)b的取值集合是4n﹣<b<4n﹣
,
即4(n﹣1)+<b<4(n﹣1)+
,
令k=n﹣1,
則4k+<b<4k+
,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓
的左、右焦點(diǎn),點(diǎn)
在橢圓
上,線段
與
軸的交點(diǎn)
滿足
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作不與
軸重合的直線
,設(shè)
與圓
相交于
兩點(diǎn),與橢圓相交于
兩點(diǎn),當(dāng)
且
時(shí),求
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位從一所學(xué)校招收某類特殊人才,對(duì)位已經(jīng)選拔入圍的學(xué)生進(jìn)行運(yùn)動(dòng)協(xié)調(diào)能力和邏輯思維能力的測(cè)試,其測(cè)試結(jié)果如下表:
例如,表中運(yùn)動(dòng)協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生有人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這
位參加測(cè)試的學(xué)生中隨機(jī)抽取一位,抽到運(yùn)動(dòng)協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生的概率為
.
(Ⅰ)求的值;
(Ⅱ)從參加測(cè)試的位學(xué)生中任意抽取
位,求其中至少有一位運(yùn)動(dòng)協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生的概率;
(III)從參加測(cè)試的位學(xué)生中任意抽取
位,設(shè)運(yùn)動(dòng)協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生人數(shù)為
,求隨機(jī)變量
的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
和
,點(diǎn)
在橢圓上,且
的面積為
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過該橢圓的左頂點(diǎn)作兩條相互垂直的直線分別與橢圓相交于不同于點(diǎn)
的兩點(diǎn)
、
,證明:動(dòng)直線
恒過
軸上一定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為
,準(zhǔn)線為
.已知點(diǎn)
在拋物線
上,點(diǎn)
在
上,
是邊長為4的等邊三角形.
(1)求的值;
(2)若直線是過定點(diǎn)
的一條直線,且與拋物線
交于
兩點(diǎn),過
作
的垂
線與拋物線交于
兩點(diǎn),求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)在
上為減函數(shù),求實(shí)數(shù)
的最小值;
(2)若存在,使
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在點(diǎn)
處的切線方程為
,求(1)實(shí)數(shù)
的值;(2)函數(shù)
的單調(diào)區(qū)間以及在區(qū)間
上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com