如圖,在正方形中,
為坐標(biāo)原點(diǎn),點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,分別將線段
和
十等分,分點(diǎn)分別記為
和
,連接
,過
作
軸的垂線與
交于點(diǎn)
。
(Ⅰ)求證:點(diǎn)都在同一條拋物線上,并求拋物線
的方程;
(Ⅱ)過點(diǎn)作直線
與拋物線E交于不同的兩點(diǎn)
, 若
與
的面積之比為4:1,求直線
的方程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的離心率為
,直線
:
與以原點(diǎn)為圓心、以橢圓
的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左焦點(diǎn)為
,右焦點(diǎn)
,直線
過點(diǎn)
且垂直于橢圓的長軸,動(dòng)直線
垂直
于點(diǎn)
,
線段垂直平分線交
于點(diǎn)
,求點(diǎn)
的軌跡
的方程;
(Ⅲ)設(shè)與
軸交于點(diǎn)
,不同的兩點(diǎn)
在
上,且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若橢圓C:的離心率e為
, 且橢圓C的一個(gè)焦點(diǎn)與拋物線y2=-12x的焦點(diǎn)重合.
(1) 求橢圓C的方程;
(2) 設(shè)點(diǎn)M(2,0), 點(diǎn)Q是橢圓上一點(diǎn), 當(dāng)|MQ|最小時(shí), 試求點(diǎn)Q的坐標(biāo);
(3) 設(shè)P(m,0)為橢圓C長軸(含端點(diǎn))上的一個(gè)動(dòng)點(diǎn), 過P點(diǎn)斜率為k的直線l交橢圓與
A,B兩點(diǎn), 若|PA|2+|PB|2的值僅依賴于k而與m無關(guān), 求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,一個(gè)頂點(diǎn)為
,且其右焦點(diǎn)到直線
的距離為3.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)直線過定點(diǎn),與橢圓交于兩個(gè)不同的點(diǎn)
,且滿足
.
求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系xOy中,過橢圓M:右焦點(diǎn)的直線
交
于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為
.
(Ι)求M的方程;
(Ⅱ)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線CD⊥AB,求四邊形面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的焦距為
,離心率為
,其右焦點(diǎn)為
,過點(diǎn)
作直線交橢圓于另一點(diǎn)
.
(Ⅰ)若,求
外接圓的方程;
(Ⅱ)若直線與橢圓
相交于兩點(diǎn)
、
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點(diǎn)P(1,0)作直線分別交射線OA、OB于A、B兩點(diǎn).
(1)當(dāng)AB中點(diǎn)為P時(shí),求直線AB的方程;
(2)當(dāng)AB中點(diǎn)在直線上時(shí),求直線AB的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com