日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,拋物線

          (I)
          (II)

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知橢圓的四個(gè)頂點(diǎn)恰好是一邊長(zhǎng)為2,一內(nèi)角為的菱形的四個(gè)頂點(diǎn).
          (I)求橢圓的方程;
          (II)直線與橢圓交于,兩點(diǎn),且線段的垂直平分線經(jīng)過(guò)點(diǎn),求為原點(diǎn))面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知拋物線C:與橢圓共焦點(diǎn),

          (Ⅰ)求的值和拋物線C的準(zhǔn)線方程;
          (Ⅱ)若P為拋物線C上位于軸下方的一點(diǎn),直線是拋物線C在點(diǎn)P處的切線,問(wèn)是否存在平行于的直線與拋物線C交于不同的兩點(diǎn)A,B,且使?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知雙曲線C:(a>0,b>0)的左、右焦點(diǎn)分別為、,離心率為3,直線y=2與C的兩個(gè)交點(diǎn)間的距離為.
          (Ⅰ)求a,b;
          (Ⅱ)設(shè)過(guò)的直線l與C的左、右兩支分別交于A、B兩點(diǎn),且,證明:、、成等比數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在正方形中,為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,分別將線段十等分,分點(diǎn)分別記為,連接,過(guò)軸的垂線與交于點(diǎn)。

          (Ⅰ)求證:點(diǎn)都在同一條拋物線上,并求拋物線的方程;
          (Ⅱ)過(guò)點(diǎn)作直線與拋物線E交于不同的兩點(diǎn), 若的面積之比為4:1,求直線的方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在直角坐標(biāo)系中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程
          (1)求曲線C的普通方程;
          (2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線L的距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在等腰直角中,,點(diǎn)在線段上.

          (Ⅰ) 若,求的長(zhǎng);
          (Ⅱ)若點(diǎn)在線段上,且,問(wèn):當(dāng)取何值時(shí),的面積最小?并求出面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:
          (1)焦點(diǎn) 為、且過(guò)點(diǎn)橢圓;
          (2)與雙曲線有相同的漸近線,且過(guò)點(diǎn)的雙曲線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為幾點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知直線上兩點(diǎn)的極坐標(biāo)分別為,圓的參數(shù)方程(為參數(shù)).
          (Ⅰ)設(shè)為線段的中點(diǎn),求直線的平面直角坐標(biāo)方程;
          (Ⅱ)判斷直線與圓的位置關(guān)系.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案