在平面直角坐標(biāo)系中,以坐標(biāo)原點為幾點,
軸的正半軸為極軸建立極坐標(biāo)系.已知直線
上兩點
的極坐標(biāo)分別為
,圓
的參數(shù)方程
(
為參數(shù)).
(Ⅰ)設(shè)為線段
的中點,求直線
的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線與圓
的位置關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的方程為,過點
作圓的兩條切線,切點分別為
、
,直線
恰好經(jīng)過橢圓
的右頂點和上頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓
(
垂直于
軸的一條弦,
所在直線的方程為
且
是橢圓上異于
、
的任意一點,直線
、
分別交定直線
于兩點
、
,求證
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
動圓M過定點A(-,0),且與定圓A´:(x-
)2+y2=12相切.
(1)求動圓圓心M的軌跡C的方程;
(2)過點P(0,2)的直線l與軌跡C交于不同的兩點E、F,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點P(1,0)作直線分別交射線OA、OB于A、B兩點.
(1)當(dāng)AB中點為P時,求直線AB的方程;
(2)當(dāng)AB中點在直線上時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xoy中,直線的參數(shù)方程為
(t為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為
。
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線交于點A、B,若點P的坐標(biāo)為
,求|PA|+|PB|。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點
,其長軸、焦距和短軸的長的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與軸正半軸、
軸分別交于點
,與橢圓分別交于點
,各點均不重合,且滿足
,
. 當(dāng)
時,試證明直線過定點.過定點(1,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點,焦點在
軸上,離心率為
,它的一個頂點恰好是拋物線
的焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線
與橢圓
相切
,直線
與
軸交于點
,當(dāng)
為何值時
的面積有最小值?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的對稱中心為原點O,焦點在x軸上,左右焦點分別為和
,且|
|=2,
點(1,)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過的直線
與橢圓C相交于A,B兩點,若
A
B的面積為
,求以
為圓心且與直線
相切是圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com