設(shè)數(shù)列的前n項(xiàng)和為
,
,且
成等比數(shù)列,當(dāng)
時(shí),
.
(1)求證:當(dāng)時(shí),
成等差數(shù)列;
(2)求的前n項(xiàng)和
.
(1)證明過程詳見解析;(2)
解析試題分析:
(1)利用和
之間的關(guān)系(
),可以得到關(guān)于
的關(guān)系式,再利用十字相乘法可以求的
,再根據(jù)題意當(dāng)
時(shí),
,則有式子
成立,即
成等差數(shù)列.
(2)利用第(1)問的結(jié)果可以得到的通項(xiàng)公式,即前11項(xiàng)成等比數(shù)列,從11項(xiàng)開始成等差數(shù)列,即為一個(gè)分段
,則其前n項(xiàng)和
也要分段討論,即分為
與
進(jìn)行求解.利用等差與等比數(shù)列前n項(xiàng)和公式即可得到相應(yīng)的
.
試題解析:
(1) 由,
,
得,
4分
當(dāng)時(shí),
,所以
,
所以當(dāng)時(shí),
成等差數(shù)列. 7分
(Ⅱ)由,得
或
又成等比數(shù)列,所以
(
),
,
而,所以
,從而
.
所以, 11分
所以. 14分
考點(diǎn):等差等比數(shù)列前n項(xiàng)和 十字相乘法
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等差數(shù)列的各項(xiàng)均為正數(shù),
,前項(xiàng)和為
,
為等比數(shù)列,
,且
. (1)求
與
;
(2)求和:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列是公差不為0的等差數(shù)列,
,且
,
,
成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前
項(xiàng)和
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為a1,且,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列是公差不為0的等差數(shù)列,a1=2且a2,a3,a4+1成等比數(shù)列。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前
項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}滿足a1+a2+…+an=n2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)任意給定的k∈N*,是否存在p,r∈N*(k<p<r)使,
,
成等差數(shù)列?若存在,用k分別表示p和r(只要寫出一組);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
我國(guó)是一個(gè)人口大國(guó),隨著時(shí)間推移,老齡化現(xiàn)象越來(lái)越嚴(yán)重,為緩解社會(huì)和家庭壓力,決定采用養(yǎng)老儲(chǔ)備金制度.公民在就業(yè)的第一年交納養(yǎng)老儲(chǔ)備金,數(shù)目為a1,以后每年交納的數(shù)目均比上一年增加d(d>0),因此,歷年所交納的儲(chǔ)備金數(shù)目a1,a2,…,an是一個(gè)公差為d的等差數(shù)列.與此同時(shí),國(guó)家給予優(yōu)惠的計(jì)息政策,不僅采用固定利率,而且計(jì)算復(fù)利.這就是說(shuō),如果固定利率為r(r>0),那么,在第n年末,第一年所交納的儲(chǔ)備金就變?yōu)閍1(1+r)n-1,第二年所交納的儲(chǔ)備金就變?yōu)閍2(1+r)n-2,…,以Tn表示到第n年所累計(jì)的儲(chǔ)備金總額.
(1)寫出Tn與Tn-1(n≥2)的遞推關(guān)系式;
(2)求證:Tn=An+Bn,其中{An}是一個(gè)等比數(shù)列,{Bn}是一個(gè)等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是等差數(shù)列,首項(xiàng)
,前
項(xiàng)和為
.令
,
的前
項(xiàng)和
.數(shù)列
是公比為
的等比數(shù)列,前
項(xiàng)和為
,且
,
.
(1)求數(shù)列、
的通項(xiàng)公式;
(2)證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com