日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)各項(xiàng)均為正實(shí)數(shù)的數(shù)列的前項(xiàng)和為,且滿足).
          (Ⅰ)求數(shù)列的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù)列的通項(xiàng)公式為),若,,)成等差數(shù)列,求的值;
          (Ⅲ)證明:存在無(wú)窮多個(gè)三邊成等比數(shù)列且互不相似的三角形,其三邊長(zhǎng)為數(shù)列中的三項(xiàng),

          (Ⅰ);(Ⅱ),
          (Ⅲ)作如下構(gòu)造:,,,其中,它們依次為數(shù)列中第項(xiàng),第項(xiàng),第,顯然它們成等比數(shù)列,且,所以它們能組成三角形.
          的任意性,知這樣的三角形有無(wú)窮多個(gè).
          用反證法證明其中任意兩個(gè)不相似

          解析試題分析:(Ⅰ)由題意,①,當(dāng)時(shí),有②,
          ②-①,得,各項(xiàng)為正,,
          從而,故成公差2的等差數(shù)列.又時(shí),,解得.故.                                4分
          (Ⅱ),要使,,成等差數(shù)列,須,
          ,整理得,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/41/e/lkfit1.png" style="vertical-align:middle;" />,為正整數(shù),只能取2,3,5.故,.                  10分
          (Ⅲ)作如下構(gòu)造:,,其中,它們依次為數(shù)列中第項(xiàng),第項(xiàng),第,顯然它們成等比數(shù)列,且,所以它們能組成三角形.
          的任意性,知這樣的三角形有無(wú)窮多個(gè).
          下面用反證法證明其中任意兩個(gè)不相似:若,且,則,整理得,所以,這與矛盾,因此,任意兩個(gè)三角形不相似.故原命題正確.           16分
          考點(diǎn):本題主要考查等差數(shù)列、等比數(shù)列的基礎(chǔ)知識(shí),構(gòu)成三角形的條件,反證法。
          點(diǎn)評(píng):基礎(chǔ)題,首先利用的關(guān)系,確定得到的通項(xiàng)公式,進(jìn)一步研究中項(xiàng)的關(guān)系。為證明,能構(gòu)成三角形,在明確表達(dá)式的基礎(chǔ)上,應(yīng)用了反證法。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          數(shù)列的各項(xiàng)都是正數(shù),前項(xiàng)和為,且對(duì)任意,都有.
          (1)求證:;    (2)求數(shù)列的通項(xiàng)公式。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知數(shù)列{an}滿足S n + a n= 2n +1.
          (1)寫(xiě)出a1,a2,a3, 并推測(cè)a n的表達(dá)式;
          (2)用數(shù)學(xué)歸納法證明所得的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律。下圖是一個(gè)11階楊輝三角:
          (1)求第20行中從左到右的第4個(gè)數(shù);
          (2)若第n行中從左到右第14個(gè)數(shù)與第15個(gè)數(shù)的比為,求n的值;
          (3)求n階(包括0階)楊輝三角的所有數(shù)的和;
          (4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35。顯然,1+3+6+10+15=35。事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù)。試用含有m、k的數(shù)學(xué)公式表示上述結(jié)論,并給予證明。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知曲線,數(shù)列的首項(xiàng),且
          當(dāng)時(shí),點(diǎn)恒在曲線上,數(shù)列{}滿足
          (1)試判斷數(shù)列是否是等差數(shù)列?并說(shuō)明理由;
          (2)求數(shù)列的通項(xiàng)公式;
          (3)設(shè)數(shù)列滿足,試比較數(shù)列的前項(xiàng)和的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在數(shù)列{an}(n∈N*)中,已知a1=1,a2k=-aka2k-1=(-1)k+1ak,k∈N*. 記數(shù)列{an}的前n項(xiàng)和為Sn.
          (1)求S5S7的值;
          (2)求證:對(duì)任意n∈N*,Sn≥0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          數(shù)列的前項(xiàng)和記為
          (Ⅰ)求的通項(xiàng)公式;
          (Ⅱ)等差數(shù)列的各項(xiàng)為正,其前項(xiàng)和為,且,又成等比數(shù)列,求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本題滿分12分)
          已知數(shù)列的前 n項(xiàng)和為,滿足,且.
          (Ⅰ)求;
          (Ⅱ)若,求證:數(shù)列是等比數(shù)列。
          (Ⅲ)若 , 求數(shù)列的前n項(xiàng)和。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題滿分12分)已知數(shù)列的前n項(xiàng)和滿足(>0,且)。數(shù)列滿足
          (I)求數(shù)列的通項(xiàng)。
          (II)若對(duì)一切都有,求的取值范圍。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案