如圖,是邊長(zhǎng)為3的正方形,
,
,
與平面
所成的角為
.
(1)求二面角的的余弦值;
(2)設(shè)點(diǎn)是線段
上一動(dòng)點(diǎn),試確定
的位置,使得
,并證明你的結(jié)論.
(1);(2)三等分點(diǎn)
解析試題分析:(1)根據(jù)平面
,確定
就是
與平面
所成的角,從而得到
,且
,可以建立空間直角坐標(biāo)系,寫(xiě)出
,設(shè)出
的一個(gè)法向量為
,根據(jù)
,解出
,而平面
的法向量設(shè)為
,所以利用向量數(shù)量積公式得出二面角
的余弦值為
;(2)由題意設(shè)
,則
,而
平面
,∴
,代入坐標(biāo),求出
,所以點(diǎn)M的坐標(biāo)為
,此時(shí)
,∴點(diǎn)M是線段BD靠近B點(diǎn)的三等分點(diǎn).
試題解析:平面
,
就是
與平面
所成的角,即
,∴
.
如圖,分別以為
軸,
軸,
軸建立空間直角坐標(biāo)系
,則各點(diǎn)的坐標(biāo)如下
,∴
,設(shè)平面
的一個(gè)法向量為
,則
,即
,令
,則
.
∵平面
,∴平面
的法向量設(shè)為
,∴
,故二面角
的余弦值為
.
(2)由題意,設(shè),則
,∵
平面
,∴
,即
解得
,∴點(diǎn)M的坐標(biāo)為
,此時(shí)
,∴點(diǎn)M是線段BD靠近B點(diǎn)的三等分點(diǎn).
考點(diǎn):1.直線,平面位置關(guān)系的證明;2.利用空間向量求二面角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角梯形中,
,
,
,如圖,把
沿
翻折,使得平面
平面
.
(1)求證:;
(2)若點(diǎn)為線段
中點(diǎn),求點(diǎn)
到平面
的距離;
(3)在線段上是否存在點(diǎn)
,使得
與平面
所成角為
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,且PA⊥平面ABCD.
(1)求證:PC⊥BD;
(2)過(guò)直線BD且垂直于直線PC的平面交PC于點(diǎn)E,且三棱錐E-BCD的體積取到最大值.
①求此時(shí)四棱錐E-ABCD的高;
②求二面角A-DE-B的正弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在四棱錐中,
⊥平面
,底面
為梯形,
∥
,
⊥
,
,點(diǎn)
在棱
上,且
.
(1)當(dāng)時(shí),求證:
∥面
;
(2)若直線與平面
所成角為
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
斜三棱柱,其中向量
,三個(gè)向量之間的夾角均為
,點(diǎn)
分別在
上且
,
=4,如圖
(Ⅰ)把向量用向量
表示出來(lái),并求
;
(Ⅱ)把向量用
表示;
(Ⅲ)求與
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,
底面
,底面
為正方形,
,
分別是
的中點(diǎn).
(1)求證:;
(2)在平面內(nèi)求一點(diǎn)
,使
平面
,并證明你的結(jié)論;
(3)求與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在邊長(zhǎng)是2的正方體-
中,
分別為
的中點(diǎn). 應(yīng)用空間向量方法求解下列問(wèn)題.
(1)求EF的長(zhǎng)
(2)證明:平面
;
(3)證明: 平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:四棱錐P—ABCD的底面為直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,側(cè)面PAD與底面垂直,PA=PD,點(diǎn)M為側(cè)棱PC上一點(diǎn).
(1)若PA=AD,求PB與平面PAD的所成角大。
(2)問(wèn)多大時(shí),AM⊥平面PDB可能成立?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
一個(gè)幾何體是由圓柱和三棱錐
組合而成,點(diǎn)
、
、
在圓
的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖3所示,其中
,
,
,
.
(1)求證:;
(2)求二面角的平面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com