日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,是邊長(zhǎng)為3的正方形,,與平面所成的角為.

          (1)求二面角的的余弦值;
          (2)設(shè)點(diǎn)是線段上一動(dòng)點(diǎn),試確定的位置,使得,并證明你的結(jié)論.

          (1);(2)三等分點(diǎn)

          解析試題分析:(1)根據(jù)平面,確定就是與平面所成的角,從而得到,且,可以建立空間直角坐標(biāo)系,寫(xiě)出,設(shè)出的一個(gè)法向量為,根據(jù),解出,而平面的法向量設(shè)為,所以利用向量數(shù)量積公式得出二面角的余弦值為;(2)由題意設(shè),則,而平面,∴,代入坐標(biāo),求出,所以點(diǎn)M的坐標(biāo)為,此時(shí),∴點(diǎn)M是線段BD靠近B點(diǎn)的三等分點(diǎn).
          試題解析:
          平面就是與平面所成的角,即,∴.
          如圖,分別以軸,軸,軸建立空間直角坐標(biāo)系,則各點(diǎn)的坐標(biāo)如下,∴,設(shè)平面的一個(gè)法向量為,則,即,令,則.
          平面,∴平面的法向量設(shè)為,∴,故二面角的余弦值為.

          (2)由題意,設(shè),則,∵平面,∴,即解得,∴點(diǎn)M的坐標(biāo)為,此時(shí),∴點(diǎn)M是線段BD靠近B點(diǎn)的三等分點(diǎn).
          考點(diǎn):1.直線,平面位置關(guān)系的證明;2.利用空間向量求二面角.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在直角梯形中,,,如圖,把沿翻折,使得平面平面

          (1)求證:;
          (2)若點(diǎn)為線段中點(diǎn),求點(diǎn)到平面的距離;
          (3)在線段上是否存在點(diǎn),使得與平面所成角為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,且PA⊥平面ABCD.
           
          (1)求證:PCBD;
          (2)過(guò)直線BD且垂直于直線PC的平面交PC于點(diǎn)E,且三棱錐E-BCD的體積取到最大值.
          ①求此時(shí)四棱錐E-ABCD的高;
          ②求二面角A-DE-B的正弦值的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在四棱錐中,⊥平面,底面為梯形,,,點(diǎn)在棱上,且

          (1)當(dāng)時(shí),求證:∥面;
          (2)若直線與平面所成角為,求實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          斜三棱柱,其中向量,三個(gè)向量之間的夾角均為,點(diǎn)分別在上且,=4,如圖

          (Ⅰ)把向量用向量表示出來(lái),并求;
          (Ⅱ)把向量表示;
          (Ⅲ)求所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在四棱錐中,底面,底面為正方形,,分別是的中點(diǎn).

          (1)求證:
          (2)在平面內(nèi)求一點(diǎn),使平面,并證明你的結(jié)論;
          (3)求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在邊長(zhǎng)是2的正方體-中,分別為
          的中點(diǎn). 應(yīng)用空間向量方法求解下列問(wèn)題.

          (1)求EF的長(zhǎng)
          (2)證明:平面;
          (3)證明: 平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知:四棱錐P—ABCD的底面為直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,側(cè)面PAD與底面垂直,PA=PD,點(diǎn)M為側(cè)棱PC上一點(diǎn).

          (1)若PA=AD,求PB與平面PAD的所成角大。
          (2)問(wèn)多大時(shí),AM⊥平面PDB可能成立?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題滿分14分)
          一個(gè)幾何體是由圓柱和三棱錐組合而成,點(diǎn)、在圓的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖3所示,其中,,,
          (1)求證:;
          (2)求二面角的平面角的大小.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案