日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分14分)
          一個(gè)幾何體是由圓柱和三棱錐組合而成,點(diǎn)、、在圓的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖3所示,其中,,
          (1)求證:;
          (2)求二面角的平面角的大。

          (本小題主要考查空間線線、線面關(guān)系,二面角,三視圖等知識(shí),考查化歸與轉(zhuǎn)化數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力、運(yùn)算求解能力.)
          方法1:(1)證明:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/78/d/wyou9.gif" style="vertical-align:middle;" />,,所以,即
          又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/14/2/15xqa3.gif" style="vertical-align:middle;" />,,所以平面
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1a/e/r3wfc2.gif" style="vertical-align:middle;" />,所以.………………………………………………………………4分
          (2)解:因?yàn)辄c(diǎn)、在圓的圓周上,且,所以為圓的直徑.
          設(shè)圓的半徑為,圓柱高為,根據(jù)正(主)視圖、側(cè)(左)視圖的面積可得,
          …………………………………………6分
          解得
          所以,.………………………………………………………………………7分
          過(guò)點(diǎn)于點(diǎn),連接,
          由(1)知,,,所以平面
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b4/2/6isug2.gif" style="vertical-align:middle;" />平面,所以
          所以為二面角的平面角.…………………………………………………………9分
          由(1)知,平面,平面,
          所以,即△為直角三角形.
          中,,則
          ,解得
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/47/2/17euq3.gif" style="vertical-align:middle;" />.…………………………………………………………………………13分
          所以
          所以二面角的平面角大小為.………………………………………………………14分
          方法2:(1)證明:因?yàn)辄c(diǎn)、、在圓的圓周上,且,所以為圓的直徑.
          設(shè)圓的半徑為,圓柱高為,根據(jù)正(主)視圖、側(cè)(左)視圖的面積可得,
          解析

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,是邊長(zhǎng)為3的正方形,,,與平面所成的角為.

          (1)求二面角的的余弦值;
          (2)設(shè)點(diǎn)是線段上一動(dòng)點(diǎn),試確定的位置,使得,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,矩形中,,,平面,,的中點(diǎn).

          (1)求證:平面
          (2)若,求平面與平面所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點(diǎn),F(xiàn)在棱AC上,且AF=3FC.

          (1)求證AC⊥平面DEF;
          (2)若M為BD的中點(diǎn),問(wèn)AC上是否存在一點(diǎn)N,使MN∥平面DEF?若存在,說(shuō)明點(diǎn)N的位置;若不存在,試說(shuō)明理由.
          (3)求平面ABD與平面DEF所成銳二面角的余弦值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題滿分12分)
          如圖,正方體的棱長(zhǎng)為,點(diǎn)的中點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (12分)
          如圖,邊長(zhǎng)為2的正方形ACDE所在的平面與平面ABC垂直,AD與CE的交點(diǎn)為M,,且AC=BC.
          (1)求證:平面EBC;w.w.zxxk.c.o
          (2求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

          直線與兩坐標(biāo)軸圍成的三角形的周長(zhǎng)為(  )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題滿分14分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,側(cè)棱PA的長(zhǎng)為2,且PAAB、AD的夾角都等于600,PC的中點(diǎn),設(shè)
          (1)試用表示出向量;
          (2)求的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

          [2013·四川高考]拋物線y2=8x的焦點(diǎn)到直線x-y=0的距離是(  )

          A.2 B.2 C. D.1

          查看答案和解析>>