【題目】已知函數(shù)(
,且
).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在
上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.(Ⅱ)當(dāng)
時(shí),
;當(dāng)
時(shí),
.
【解析】【試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)
的單調(diào)區(qū)間.(II) 由(Ⅰ)得
在
上單調(diào)遞減,在
上單調(diào)遞增,由此可知
.利用導(dǎo)數(shù)和對(duì)
分類討論求得函數(shù)在
不同取值時(shí)的最大值.
【試題解析】
(Ⅰ),
設(shè)
,則
.
∵,
,∴
在
上單調(diào)遞增,
從而得在
上單調(diào)遞增,又∵
,
∴當(dāng)時(shí),
,當(dāng)
時(shí),
,
因此, 的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.
(Ⅱ)由(Ⅰ)得在
上單調(diào)遞減,在
上單調(diào)遞增,
由此可知.
∵,
,
∴.
設(shè),
則
.
∵當(dāng)時(shí),
,∴
在
上單調(diào)遞增.
又∵,∴當(dāng)
時(shí),
;當(dāng)
時(shí),
.
①當(dāng)時(shí),
,即
,這時(shí),
;
②當(dāng)時(shí),
,即
,這時(shí),
.
綜上, 在
上的最大值為:當(dāng)
時(shí),
;
當(dāng)時(shí),
.
[點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對(duì)方程等價(jià)變形轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓
的普通方程為
. 在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(Ⅰ) 寫出圓 的參數(shù)方程和直線
的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線 與
軸和
軸的交點(diǎn)分別為
,
為圓
上的任意一點(diǎn),求
的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=.
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性;
(3)若對(duì)任意的t∈R,不等式f(k-3t2)+f(t2+2t)≤0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:
①函數(shù)y=cos(-2x)的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=,k∈Z};
③在同一直角坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn);
④函數(shù)y=sin(x-)在[0,π]上是增函數(shù).其中,正確的說法是________.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某四面體的六條棱長(zhǎng)分別為3,3,2,2,2,2,則兩條較長(zhǎng)棱所在直線所成角的余弦值為( )
A. 0B. C. 0或
D. 以上都不對(duì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年4月4日召開的國(guó)務(wù)院常務(wù)會(huì)議明確將進(jìn)一步推動(dòng)網(wǎng)絡(luò)提速降費(fèi)工作落實(shí),推動(dòng)我國(guó)數(shù)字經(jīng)濟(jì)發(fā)展和信息消費(fèi),今年移動(dòng)流量資費(fèi)將再降以上,為響應(yīng)國(guó)家政策,某通訊商計(jì)劃推出兩款優(yōu)惠流量套餐,詳情如下:
套餐名稱 | 月套餐費(fèi)/元 | 月套餐流量/M |
A | 30 | 3000 |
B | 50 | 6000 |
這兩款套餐均有以下附加條款:套餐費(fèi)用月初一次性收取,手機(jī)使用流量一旦超出套餐流量,系統(tǒng)就會(huì)自動(dòng)幫用戶充值流量,資費(fèi)20元;如果又超出充值流量,系統(tǒng)再次自動(dòng)幫用戶充值
流量,資費(fèi)20元,以此類推.此外,若當(dāng)月流量有剩余,系統(tǒng)將自動(dòng)清零,不可次月使用.
小張過去50個(gè)月的手機(jī)月使用流量(單位:M)的頻數(shù)分布表如下:
月使用流量分組 | ||||||
頻數(shù) | 4 | 5 | 11 | 16 | 12 | 2 |
根據(jù)小張過去50個(gè)月的手機(jī)月使用流量情況,回答以下幾個(gè)問題:
(1)若小張選擇A套餐,將以上頻率作為概率,求小張?jiān)谀骋粋(gè)月流量費(fèi)用超過50元的概率;
(2)小張擬從A或B套餐中選定一款,若以月平均費(fèi)用作為決策依據(jù),他應(yīng)訂哪一種套餐?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格
(單位:元/千克)滿足
,其中
,
為常數(shù).已知銷售價(jià)格為7元/千克時(shí),每日可售出該商品11千克.
(1)求的值;
(2)若該商品成本為5元/千克,試確定銷售價(jià)格值,使商場(chǎng)每日銷售該商品所獲利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,將圓
上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>
倍,再把所得曲線上每一點(diǎn)向下平移1個(gè)單位得到曲線
.以
為極點(diǎn),以
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(1)寫出的參數(shù)方程和
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在
上,點(diǎn)
在
上,求使
取最小值時(shí)點(diǎn)
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有兩臺(tái)不同機(jī)器A和B生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取二十件,進(jìn)行品質(zhì)鑒定,鑒定成績(jī)的莖葉圖如下所示:
該產(chǎn)品的質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為優(yōu)秀;鑒定成績(jī)達(dá)到
的產(chǎn)品,質(zhì)量等級(jí)為良好;鑒定成績(jī)達(dá)到
的產(chǎn)品,質(zhì)量等級(jí)為合格.將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
(1)從等級(jí)為優(yōu)秀的樣本中隨機(jī)抽取兩件,記為來自B機(jī)器生產(chǎn)的產(chǎn)品數(shù)量,寫出
的分布列,并求
的數(shù)學(xué)期望;
(2)完成下列列聯(lián)表,以產(chǎn)品等級(jí)是否達(dá)到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過0.05的情況下,認(rèn)為B機(jī)器生產(chǎn)的產(chǎn)品比A機(jī)器生產(chǎn)的產(chǎn)品好;
A生產(chǎn)的產(chǎn)品 | B生產(chǎn)的產(chǎn)品 | 合計(jì) | |
良好以上(含良好) | |||
合格 | |||
合計(jì) |
(3)已知優(yōu)秀等級(jí)產(chǎn)品的利潤(rùn)為12元/件,良好等級(jí)產(chǎn)品的利潤(rùn)為10元/件,合格等級(jí)產(chǎn)品的利潤(rùn)為5元/件,A機(jī)器每生產(chǎn)10萬件的成本為20萬元,B機(jī)器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測(cè)算,兩種機(jī)器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達(dá)到5萬元以上,則淘汰收益低的機(jī)器,若收益之差不超過5萬元,則仍然保留原來的兩臺(tái)機(jī)器.你認(rèn)為該工廠會(huì)仍然保留原來的兩臺(tái)機(jī)器嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為拋物線
:
的焦點(diǎn),過
的動(dòng)直線交拋物線
于
,
兩點(diǎn).當(dāng)直線與
軸垂直時(shí),
.
(1)求拋物線的方程;
(2)設(shè)直線的斜率為1且與拋物線的準(zhǔn)線
相交于點(diǎn)
,拋物線
上存在點(diǎn)
使得直線
,
,
的斜率成等差數(shù)列,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com