日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,將邊長為2的正方形ABCD沿對(duì)角線BD折成一個(gè)直二面角,且EA⊥平面ABD,AE=.

          (1)若,求證:AB∥平面CDE;
          (2)求實(shí)數(shù)的值,使得二面角AECD的大小為60°.

          (1)答案詳見解析;(2)

          解析試題分析:空間向量在立體幾何中的應(yīng)用,最大的優(yōu)點(diǎn)就是避開了傳統(tǒng)立體幾何中“如何添加輔助線”這個(gè)難點(diǎn),使得操作更模式化、易操作.需根據(jù)已知條件尋找(或添加)三條共點(diǎn)的兩兩垂直的三條垂線,分別作為軸,建立空間直角坐標(biāo)系.(1)由已知,以的方向作為軸的正方向,建立如圖所示的空間直角坐標(biāo)系,用坐標(biāo)表示有關(guān)點(diǎn),要證明AB∥平面CDE,只需證明垂直于面CDE的法向量即可.本題還可以利用線面垂直的判定定理證明;(2)分別求出面和面的法向量,并求法向量的夾角,利用余弦值等于列方程,求即可.

          試題解析:(1)如圖建立空間指教坐標(biāo)系,則A(0,0,0),B(2,0,0),C(1,1,),D(0,2,0),E(0,0,),
                                    2分
          設(shè)平面的一個(gè)法向量為,
          則有,
          時(shí),                    4分
          ,又不在平面內(nèi),所以平面;                       7分
          (2)如圖建立空間直角坐標(biāo)系,則
          A(0,0,0),B(2,0,0),C(1,1,),D(0,2,0),E(0,0,),
          ,
          設(shè)平面的一個(gè)法向量為,
          則有,取時(shí),                  9分
          又平面的一個(gè)法向量為,              10分
          因?yàn)槎娼?img src="http://thumb.zyjl.cn/pic5/tikupic/d1/3/1qou23.png" style="vertical-align:middle;" />的大小為,,
          ,解得                      14分
          ,所以.                       15分
          考點(diǎn):1、直線和平面平行的判定定理;2、二面角的求法.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖長方體中,底面ABCD是邊長為1的正方形,E為延長線上的一點(diǎn)且滿足.
          (1)求證:平面;
          (2)當(dāng)為何值時(shí),二面角的大小為.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知四棱錐P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一點(diǎn),且PA∥平面QBD.

          ⑴確定Q的位置;
          ⑵求二面角Q-BD-C的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知平面四邊形中,的中點(diǎn),,
          .將此平面四邊形沿折成直二面角
          連接,設(shè)中點(diǎn)為

          (1)證明:平面平面
          (2)在線段上是否存在一點(diǎn),使得平面?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.
          (3)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖1,在Rt中,, D、E分別是上的點(diǎn),且,將沿折起到的位置,使,如圖2.

          (1)求證:平面平面
          (2)若,求與平面所成角的余弦值;
          (3)當(dāng)點(diǎn)在何處時(shí),的長度最小,并求出最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如右圖,在棱長為a的正方體ABCDA1B1C1D1中,G為△BC1D的重心,

          (1)試證:A1、G、C三點(diǎn)共線;
          (2)試證:A1C⊥平面BC1D;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE.

          (1)求證:BE⊥平面PCD;
          (2)求二面角A一PD-B的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在如圖所示的幾何體中,四邊形是等腰梯形,,.在梯形中,,且⊥平面

          (1)求證:;
          (2)若二面角,求的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四棱柱ABCDA1B1C1D1中,側(cè)棱A1A⊥底面ABCD,ABDC,ABAD,ADCD=1,AA1AB=2,E為棱AA1的中點(diǎn).

          (1)證明B1C1CE;
          (2)求二面角B1CEC1的正弦值;
          (3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案