日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=|2x+1|+|2x-1|
          (Ⅰ)求不等式f(x)≤12的解集M;
          (Ⅱ)當(dāng)a,b∈M時(shí),證明:3|a+b|≤|9+ab|.
          考點(diǎn):絕對(duì)值不等式的解法
          專題:不等式的解法及應(yīng)用
          分析:(Ⅰ)通過對(duì)自變量x取值范圍的分類討論,去掉原函數(shù)式中的絕對(duì)值符號(hào),再解相應(yīng)的不等式,最后取并集即可;
          (Ⅱ)由(Ⅰ)知M={x|-3≤x≤3},a,b∈M,于是-3≤a≤3,-3≤b≤3,易證(9-a2)(9-b2)≥0,進(jìn)一步整理可得9(a+b)2≤(9+ab)2,開方即可證得結(jié)論.
          解答: 證明:(Ⅰ)∵f(x)=|2x+1|+|2x-1|≤12,
          當(dāng)x≤-
          1
          2
          時(shí),-(2x+1)+1-2x≤12,得x≥-3,所以-3≤x≤-
          1
          2
          ;…2分
          當(dāng)-
          1
          2
          <x<
          1
          2
          時(shí),(2x+1)-(1-2x)≤12,2≤12成立,所以-
          1
          2
          <x<
          1
          2
          ;.3分
          當(dāng)x≥
          1
          2
          時(shí),2x+1+2x-1≤12,解得x≤3,所以
          1
          2
          ≤x≤3;…4分
          綜上,M={x|-3≤x≤3}…5分
          (Ⅱ)當(dāng)a,b∈M時(shí),-3≤a≤3,-3≤b≤3,…6分
          a2≤9,b2≤9,9-a2≥0,9-b2≥0,(9-a2)(9-b2)≥0,…7分
          即9a2+9b2≤81+a2b2,9a2++18ab+9b2≤81+18ab+a2b2,…8分
          9(a+b)2≤(9+ab)2,…9分
          于是有3|a+b|≤|9+ab|…10分
          點(diǎn)評(píng):本題考查不等式的證明,著重考查分類討論思想與等價(jià)轉(zhuǎn)化思想的綜合運(yùn)用,考查推理論證能力,屬于難題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          橢圓M:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率為
          6
          3
          ,且過點(diǎn)(
          2
          ,
          3
          3
          ).
          (1)求橢圓M的方程;
          (2)直線l與橢圓M交于A,B兩點(diǎn),且線段AB的垂直平分線經(jīng)過點(diǎn)(0,-
          1
          2
          ),求△AOB(O為原點(diǎn))面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          某學(xué)校甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽的培訓(xùn),在培訓(xùn)期間,他們參加5次預(yù)賽,成績(jī)記錄如下:
          82 82 79 95 87
          95 75 80 90 85
          (Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
          (Ⅱ)現(xiàn)要從甲、乙兩人中選派一人參加數(shù)學(xué)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位學(xué)生參賽更合適?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          方程x2+2mx+2m+1=0在(-1,0)和(1,2)各有一個(gè)根,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義域?yàn)镽函數(shù)f(x)=
          ex
          x2-ax+1
          ,其中a∈R.
          (Ⅰ)求實(shí)數(shù)a的取值范圍,并討論當(dāng)a≥0時(shí),f(x)的單調(diào)性;
          (Ⅱ)當(dāng)a≥0時(shí),證明:當(dāng)x∈[0,1+a]時(shí),f(x)≥x.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在一個(gè)六角形體育館的一角MAN內(nèi),用長(zhǎng)為a的圍欄設(shè)置一個(gè)運(yùn)動(dòng)器材儲(chǔ)存區(qū)域(如圖所示),已知∠A=120°,B是墻角線AM上的一點(diǎn),C是墻角線AN上的一點(diǎn).
          (1)若BC=a=20,求儲(chǔ)存區(qū)域面積的最大值;
          (2)若AB=AC=10,在折線MBCN內(nèi)選一點(diǎn)D,使BD+DC=20,求四邊形儲(chǔ)存區(qū)域DBAC的最大面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知多項(xiàng)式(1+x)+(1+x)2+…+(1+x)n=b0+b1x+b2x2+…+bnxn,且滿足b1+b2+…+bn=26,則正整數(shù)n的一個(gè)可能值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知F是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF與圓x2+y2=
          1
          4
          b2相切于點(diǎn)Q,且
          PQ
          =
          QF
          ,則橢圓C的離心率為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=ax 2 +2x+c(a,c∈N*)滿足:①f(1)=5;②6<f(2)<11.
          (1)求a,c的值; 
          (2)設(shè)g(x)=f(x+b),是否存在實(shí)數(shù)b使g(x)為偶函數(shù);若存在,求出b的值;若不存在,說明理由;
          (3)設(shè)函數(shù)h(x)=log2[n-f(x)],討論此函數(shù)在定義域范圍內(nèi)的零點(diǎn)個(gè)數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案