日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知集合,且),若存在非空集合,使得,且,并任意,都有,則稱集合S具有性質(zhì)P,稱為集合SP子集.

          1)當(dāng)時(shí),試說明集合S具有性質(zhì)P,并寫出相應(yīng)的P子集;

          2)若集合S具有性質(zhì)P,集合T是集合S的一個(gè)P子集,設(shè),求證:任意,,都有

          3)求證:對(duì)任意正整數(shù),集合S具有性質(zhì)P.

          【答案】1;(2)見解析;(3)見解析

          【解析】

          (1)根據(jù)新定義,即可求出的P子集;(2)分類討論,根據(jù)定義即可證明,(3)利用數(shù)學(xué)歸納法證明即可.

          (1)當(dāng)時(shí),,

          ,

          ,且對(duì)都有

          所以S具有性質(zhì)P,相應(yīng)的P子集為,

          (2)1.若,由已知,

          所以;

          2.若,可設(shè)

          此時(shí)

          所以

          所以;

          3.若,

          所以

          又因?yàn)?/span>,

          所以

          所以

          所以

          綜上所述:任意,,都有

          (3)由(1)可知當(dāng)時(shí),命題成立,即集合S具有性質(zhì)P

          假設(shè)時(shí),命題成立

          都有

          那么當(dāng)時(shí),記

          并構(gòu)造如下個(gè)集合,,

          顯然

          又因?yàn)?/span>

          所以

          下面證明中任意兩個(gè)元素之差不等于中的任意一個(gè)元素

          1.若兩個(gè)元素

          所以

          2.若兩個(gè)元素都屬于

          由第二問可知,中任意兩個(gè)元素之差不等于中的任意元素

          從而時(shí)命題成立

          綜上所述:對(duì)任意正整數(shù),集合S具有性質(zhì)P.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,,,動(dòng)點(diǎn)滿足:直線與直線的斜率之積恒為,記動(dòng)點(diǎn)的軌跡為曲線.

          1)求曲線的方程;

          2)若點(diǎn)位于第一象限,過點(diǎn),分別作直線,直線,直線,交于點(diǎn).

          ①若點(diǎn)的橫坐標(biāo)為-1,求點(diǎn)的坐標(biāo);

          ②直線與曲線交于點(diǎn),且,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】的表格填上數(shù)字,設(shè)在第i行第j列所組成的數(shù)字為,,則表格中共有5個(gè)1的填表方法種數(shù)為______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)于函數(shù),如果存在實(shí)數(shù),且不同時(shí)成立),使得對(duì)恒成立,則稱函數(shù)映像函數(shù)”.

          1)判斷函數(shù)是否是映像函數(shù),如果是,請(qǐng)求出相應(yīng)的的值,若不是,請(qǐng)說明理由;

          2)已知函數(shù)是定義在上的映像函數(shù),且當(dāng)時(shí),.求函數(shù))的反函數(shù);

          3)在(2)的條件下,試構(gòu)造一個(gè)數(shù)列,使得當(dāng)時(shí),,并求時(shí),函數(shù)的解析式,及的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),給出下列四個(gè)判斷:

          1的值域是;

          2的圖像是軸對(duì)稱圖形;

          3的圖像是中心對(duì)稱圖形;

          4)方程有解.

          其中正確的判斷有(

          A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知.

          1)求函數(shù)的單調(diào)區(qū)間;

          2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地政府為了幫助當(dāng)?shù)剞r(nóng)民脫貧致富,開發(fā)了一種新型水果類食品,該食品生產(chǎn)成本為每件8.當(dāng)天生產(chǎn)當(dāng)天銷售時(shí),銷售價(jià)為每件12元,當(dāng)天未賣出的則只能賣給水果罐頭廠,每件只能賣5.每天的銷售量與當(dāng)天的氣溫有關(guān),根據(jù)市場(chǎng)調(diào)查,若氣溫不低于,則銷售5000件;若氣溫位于,則銷售3500件;若氣溫低于,則銷售2000.為制定今年8月份的生產(chǎn)計(jì)劃,統(tǒng)計(jì)了前三年8月份的氣溫范圍數(shù)據(jù),得到下面的頻數(shù)分布表:

          氣溫范圍

          (單位:)

          天數(shù)

          4

          14

          36

          21

          15

          以氣溫范圍位于各區(qū)間的頻率代替氣溫范圍位于該區(qū)間的概率.

          (1)求今年8月份這種食品一天銷售量(單位:件)的分布列和數(shù)學(xué)期望值;

          (2)設(shè)8月份一天銷售這種食品的利潤(rùn)為(單位:元),當(dāng)8月份這種食品一天生產(chǎn)量(單位:件)為多少時(shí),的數(shù)學(xué)期望值最大,最大值為多少

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)于在某個(gè)區(qū)間上有意義的函數(shù),如果存在一次函數(shù)使得對(duì)于任意的,有恒成立,則稱函數(shù)是函數(shù)的一個(gè)弱漸近函數(shù).

          1)若函數(shù)是函數(shù)在區(qū)間上的一個(gè)弱漸近函數(shù),求實(shí)數(shù)的取值范圍;

          2)證明:函數(shù)是函數(shù)在區(qū)間上的弱漸近函數(shù);

          3)試問:函數(shù)與函數(shù)(其中為自然對(duì)數(shù)的底數(shù))在區(qū)間上是否存在相同的弱漸近函數(shù)?如果存在,請(qǐng)求出對(duì)應(yīng)的弱漸近函數(shù)應(yīng)滿足的條件;如不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),若存在實(shí)數(shù),使得對(duì)于定義域內(nèi)的任意實(shí)數(shù),均有成立,則稱函數(shù)為“可平衡”函數(shù),有序數(shù)對(duì)稱為函數(shù)的“平衡”數(shù)對(duì).

          1)若,判斷是否為“可平衡”函數(shù),并說明理由;

          2)若,,當(dāng)變化時(shí),求證:的“平衡”數(shù)對(duì)相同;

          3)若,且、均為函數(shù)的“平衡”數(shù)對(duì).當(dāng)時(shí),求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案