日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,已知角A,B,C所對(duì)的邊分別為a,b,c,且tanB=2,tanC=3.
          (1)求角A的大。
          (2)若c=3,求b的長(zhǎng).

          【答案】
          (1)解:因?yàn)椋簍anB=2,tanC=3,tan(B+C)= = =﹣1,

          因?yàn)椋篈=180°﹣B﹣C,

          所以:tanA=tan(180°﹣(B+C))=﹣tan(B+C)=1

          因?yàn)椋篈∈(0,π),

          所以:A=


          (2)解:因?yàn)椋篶=3,tanB=2,tanC=3.

          所以:sinB= ,sinC= ,

          所以由正弦定理可得:b= = =2


          【解析】(1)利用兩角和的正切函數(shù)公式表示出tan(B+C),把tanB和tanC的值代入即可求出tan(B+C)的值,根據(jù)三角形的內(nèi)角和定理及誘導(dǎo)公式得到tanA等于﹣tan(B+C),進(jìn)而得到tanA的值,結(jié)合A的范圍即可得解;(2)由已知利用同角三角函數(shù)基本關(guān)系式可求sinB,sinC的值,進(jìn)而利用正弦定理即可得解b的值.
          【考點(diǎn)精析】通過(guò)靈活運(yùn)用兩角和與差的正切公式,掌握兩角和與差的正切公式:即可以解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓外,過(guò)點(diǎn)作圓的切線,設(shè)切點(diǎn)為.

          (1)若點(diǎn)運(yùn)動(dòng)到處,求此時(shí)切線的方程;

          (2)求滿足的點(diǎn)的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱錐P-ABC中,PA底面ABC,.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.

          1)求證:MN平面BDE;

          (2)求二面角C-EM-N的正弦值;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知集合M={x|3+2xx2>0},N={x|x>a},若MN,則實(shí)數(shù)a的取值范圍是(
          A.[3,+∞)
          B.(3,+∞)
          C.(﹣∞,﹣1]
          D.(﹣∞,﹣1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知某校5個(gè)學(xué)生期末考試數(shù)學(xué)成績(jī)和總分年級(jí)排名如下表:

          學(xué)生的編號(hào)

          1

          2

          3

          4

          5

          數(shù)學(xué)

          115

          112

          93

          125

          145

          年級(jí)排名

          250

          300

          450

          70

          10

          (1)通過(guò)大量事實(shí)證明發(fā)現(xiàn),一個(gè)學(xué)生的數(shù)學(xué)成績(jī)和總分年級(jí)排名具有很強(qiáng)的線性相關(guān)關(guān)系,在上述表格是正確的前提下,用表示數(shù)學(xué)成績(jī),用表示年級(jí)排名,求的回歸方程;(其中都取整數(shù))

          (2)若在本次考試中,預(yù)計(jì)數(shù)學(xué)分?jǐn)?shù)為120分的學(xué)生年級(jí)排名大概是多少?

          參考數(shù)據(jù)和公式:,其中,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在數(shù)列{an}中,已知a1= ,an+1= an ,n∈N* , 設(shè)Sn為{an}的前n項(xiàng)和.
          (1)求證:數(shù)列{3nan}是等差數(shù)列;
          (2)求Sn;
          (3)是否存在正整數(shù)p,q,r(p<q<r),使Sp , Sq , Sr成等差數(shù)列?若存在,求出p,q,r的值;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點(diǎn).

          (1)求異面直線AP,BM所成角的余弦值;
          (2)點(diǎn)N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為 ,求λ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):

          (1)求回歸直線方程.

          (2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入-成本)

          參考數(shù)據(jù)如下:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】正三角形的邊長(zhǎng)為,將它沿高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體外接球表面積為

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案