日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          (1)求函數(shù)f(x)是單調(diào)區(qū)間;

          (2)如果關(guān)于x的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值集合;

          (3)是否存在正數(shù)k,使得關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根?如果存在,求k滿足的條件;如果不存在,說明理由.

          【答案】(1) 是函數(shù)的增區(qū)間;(-1,0)和(0,3)是函數(shù)的減區(qū)間;

          (2) 實(shí)數(shù)m的取值范圍是;(3) 滿足條件的正數(shù)k不存在.

          【解析】試題分析:(1)先求函數(shù)導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律,確定單調(diào)區(qū)間,(2)分離參變得求函數(shù)值域,利用導(dǎo)數(shù)求值域,(3)由于恒正遞增函數(shù), 上恒正減函數(shù),因此可得矛盾,即推得不存在

          試題解析:(1)函數(shù)的定義域是

          對(duì)求導(dǎo)得

          ,由

          因此 是函數(shù)的增區(qū)間;

          (-1,0)和(0,3)是函數(shù)的減區(qū)間

          (2)因?yàn)?/span>

          所以實(shí)數(shù)m的取值范圍就是函數(shù)的值域

          對(duì)

          ∴當(dāng)x=2時(shí)取得最大值,且

          又當(dāng)x無限趨近于0時(shí),無限趨近于無限趨近于0,

          進(jìn)而有無限趨近于-∞.因此函數(shù)的值域是

          即實(shí)數(shù)m的取值范圍是

          (3)結(jié)論:這樣的正數(shù)k不存在。

          證明:假設(shè)存在正數(shù)k,使得關(guān)于x的方程

          兩個(gè)不相等的實(shí)數(shù)根,則

          根據(jù)對(duì)數(shù)函數(shù)定義域知都是正數(shù)。

          又由(1)可知,當(dāng)

          =

          再由k>0,可得

          由于 不妨設(shè) ,由①和②可得

          利用比例性質(zhì)得

          由于上的恒正增函數(shù),且

          又由于 上的恒正減函數(shù),且

          ,這與(*)式矛盾。因此滿足條件的正數(shù)k不存在.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

          (2)當(dāng)時(shí),分別求函數(shù)的最小值和的最大值,并證明當(dāng)時(shí), 成立;

          (3)令,當(dāng)時(shí),判斷函數(shù)有幾個(gè)不同的零點(diǎn)并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4—4:坐標(biāo)系與參數(shù)方程選講.

          在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為.

          (1)寫出直線與曲線的直角坐標(biāo)方程;

          (2)過點(diǎn)M平行于直線的直線與曲線交于兩點(diǎn),若,求點(diǎn)M軌跡的直角坐標(biāo)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱錐P-ABC中,平面PAC平面ABC, ABC=,點(diǎn)D、E在線段AC上,且AD=DE=EC=2,PD=PC=4,點(diǎn)F在線段AB上,且EF//BC.

          (Ⅰ)證明:AB平面PFE.

          (Ⅱ)若四棱錐P-DFBC的體積為7,求線段BC的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,菱形ABCD與等邊PAD所在的平面相互垂直,AD=2,∠DAB=60°.

          (1)證明:ADPB;

          求三棱錐CPAB的高.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某項(xiàng)運(yùn)動(dòng)組委會(huì)為了搞好接待工作,招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有10人和6人喜愛運(yùn)動(dòng),其余人不喜愛運(yùn)動(dòng).得到下表:

          (1)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表, 問:能否在犯錯(cuò)誤的概率不超過0.10的前提下,認(rèn)為性別與喜愛運(yùn)動(dòng)有關(guān)?并說明理由.

          (2)如果從喜歡運(yùn)動(dòng)的女志愿者中(其中恰有4人會(huì)外語)抽取2名,求抽出的志愿者中能勝任翻譯工作的人數(shù)的分布列及數(shù)學(xué)期望.

          參考公式:

          參考數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) 為自然對(duì)數(shù)的底數(shù)),且曲線在點(diǎn)處的切線平行于軸.

          (1)求的值;

          (2)求函數(shù)的極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,有一塊半圓形空地,開發(fā)商計(jì)劃建一個(gè)矩形游泳池及其矩形附屬設(shè)施,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為,半徑為,矩形的一邊在直徑上,點(diǎn)在圓周上, 在邊上,且,設(shè).

          (1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;

          2)當(dāng)為何值時(shí),能符合園林局的要求?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          (1)當(dāng)時(shí),求的單調(diào)區(qū)間;

          (2)當(dāng)時(shí),若存在使得成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案