日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知.

          (1)當時,求證:;

          (2)若有三個零點時,求的范圍.

          【答案】(1)證明見解析;(2).

          【解析】分析:(1)令,,利用導數(shù)可得上單調(diào)遞減,,從而可得結(jié)論; (2)有三個零點等價于有三個零點,當時,當時,可得是單調(diào)函數(shù),至多有一個零點,不符合題意,時,利用導數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性,結(jié)合函數(shù)圖象可得的范圍是.

          詳解(1)證明:,

          ,,

          ,

          上單調(diào)遞減,,

          所以原命題成立.

          (2)由 有三個零點可得

          有三個零點,

          ,

          ①當時,恒成立,可得至多有一個零點,不符合題意;

          ②當時,恒成立,可得至多有一個零點,不符合題意;

          ③當時,記得兩個零點為,不妨設,且,

          時,;時,;

          觀察可得,且,

          時,;單調(diào)遞增,

          所以有,即,

          時,單調(diào)遞減,

          ,單調(diào)遞減,

          由(1)知,,且,所以上有一個零點,

          ,且,所以上有一個零點,

          綜上可知有三個零點,

          有三個零點,

          所求的范圍是.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (1)討論的單調(diào)性;

          (2)若方程存在兩個不同的實數(shù)根, ,證明: .

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,直角坐標系中,圓的方程為,,,為圓上三個定點,某同學從點開始,用擲骰子的方法移動棋子.規(guī)定:①每擲一次骰子,把一枚棋子從一個定點沿圓弧移動到相鄰下一個定點;②棋子移動的方向由擲骰子決定,若擲出骰子的點數(shù)為偶數(shù),則按圖中箭頭方向移動;若擲出骰子的點數(shù)為奇數(shù),則按圖中箭頭相反的方向移動.設擲骰子次時,棋子移動到,,處的概率分別為,.例如:擲骰子一次時,棋子移動到,,處的概率分別為,,

          1)分別擲骰子二次,三次時,求棋子分別移動到,處的概率;

          2)擲骰子次時,若以軸非負半軸為始邊,以射線,,為終邊的角的余弦值記為隨機變量,求的分布列和數(shù)學期望;

          3)記,,其中.證明:數(shù)列是等比數(shù)列,并求.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】數(shù)列是等比數(shù)列,公比大于0,前項和是等差數(shù)列,已知,

          (Ⅰ)求數(shù)列,的通項公式,

          (Ⅱ)設的前項和為

          (。┣

          (ⅱ)若,記,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】2021年起,我省將實行“3+1+2”高考模式,某中學為了解本校學生的選考情況,隨機調(diào)查了100位學生,其中選考化學或生物的學生共有70位,選考化學的學生共有40位,選考化學且選考生物的學生共有20位.若該校共有1500位學生,則該校選考生物的學生人數(shù)的估計值為(

          A.300B.450C.600D.750

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知點在橢圓 上, 是橢圓的一個焦點.

          )求橢圓的方程;

          )橢圓C上不與點重合的兩點, 關于原點O對稱,直線 分別交軸于, 兩點.求證:以為直徑的圓被直線截得的弦長是定值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為了更好地支持中小型企業(yè)的發(fā)展,某市決定對部分企業(yè)的稅收進行適當?shù)臏p免,某機構(gòu)調(diào)查了當?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個結(jié)論:

          樣本數(shù)據(jù)落在區(qū)間的頻率為0.45;

          如果規(guī)定年收入在500萬元以內(nèi)的企業(yè)才能享受減免稅政策,估計有55%的當?shù)刂行⌒推髽I(yè)能享受到減免稅政策;

          樣本的中位數(shù)為480萬元.

          其中正確結(jié)論的個數(shù)為( )

          A.0B.1C.2D.3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】《普通高中數(shù)學課程標準(2017版)》提出了數(shù)學學科的六大核心素養(yǎng).為了比較甲、乙兩名高二學生的數(shù)學核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標對二人進行了測驗,根據(jù)測驗結(jié)果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(

          A.甲的數(shù)據(jù)分析素養(yǎng)高于乙

          B.甲的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)

          C.乙的六大素養(yǎng)中邏輯推理最差

          D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,四邊形ABCD是邊長為4的菱形,∠BAD=60°,對角線ACBD相交于點O,四邊形ACFE為梯形,EF//AC,點E在平面ABCD上的射影為OA的中點,AE與平面ABCD所成角為45°.

          (Ⅰ)求證:BD⊥平面ACF

          (Ⅱ)求平面DEF與平面ABCD所成角的正弦值.

          查看答案和解析>>

          同步練習冊答案